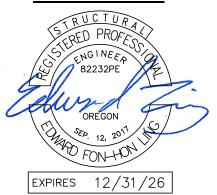


Structural Design Calculations

OMIC Equipment Footing Design Scappoose, OR

Client Information

Al Peterson AKAAN Architecture + Design LLC 101 St. Helens St St. Helens, OR 97051


Prepared By

Peterson Structural Engineers September 3, 2025 Project No. 2501-0033 **Project Site**

OMIC R&D

33701 Charles T. Parker Way Scappoose, OR 97056 45.7682, -122.8734

Endorsement

Scope

To provide structural calculations for anchorage and mat slab design at the location given on the cover page. Elements under review include (6) unique anchorage designs and mat slab design. Analysis of the mechanical equipment or any other elements not specifically referenced in these calculations are outside the purview of these calculations and are designed by others.

References

- 1. 2022 Oregon Structural Specialty Code (OSSC)
- 2. 2021 International Building Code (IBC)
- 3. ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers (ASCE)
- 4. 2019 Building Code Requirements for Structural Concrete, ACI 318-19, and Commentary (ACI)
- 5. Geotechnical Report generated by Intertek PSI, dated 01/10/2020, their report number 07041279 (Geotech)
- 6. ASCE 7 Hazard Tool, https://asce7hazardtool.online/
- 7. Drawings provided by client on 08/04/2025, generated by CHART and drawings dated 01/16/2018 (Dwgs Nitrogen Tank)
- 8. Drawings provided by client on 08/04/2025, generated by CTR and drawings dated 05/23/2023 (Dwgs P2K Pump Skid)
- 9. Drawings provided by client on 08/04/2025, generated by Nikkiso Cryoquip and drawings dated 07/11/2025 (Dwgs NC Vaporizer)
- 10. Drawings provided by client on 08/07/2025, generated by Eleet Cryogenics, Inc. and drawings dated 09/10/2018 (Dwgs PCM)
- 11. Drawings provided by client on 08/04/2025, generated by FIBA Technologies, Inc. and drawings dated 04/03/2025 (Dwgs ASME)
- 12. Drawings provided by client on 08/04/2025, generated by Thermax, Inc. and drawings dated 11/11/2008 (Dwgs T Vaporizer)

project	2501-0033	date	9/3/2025	5	
designer	CTN	sheet	2	of	82

Table of Contents

Scope	2
References	2
Table of Contents	3
Design Criteria	4
Concrete Design Information	4
Soil Design Values (per Geotechnical Report)	4
Wind Loading	4
Seismic Loading	5
Load Generation	6
Structural Calculations	19
Nitrogen Tank Anchorage	19
P2K Pump Skid	
Nikkiso Cryoquip Vaporizer	32
Pressure Control Manifold	38
ASME Tube	44
Thermax Vaporizer	49
Mat Slab Design	54
Appendix A – Dewalt Design Assist	55
Nitrogen Tank	55
P2K Pump Skid	59
Nikkiso Cryoquip Vaporizer	63
Pressure Control Manifold	67
ASME Tube	71
Thermax Vaporizer	75
Annendiy R – Enercalc	79

project	2501-0033	date	9/3/2025	<u> </u>	
designer	CTN	sheet	3	of	82

Design Criteria

Risk Category II

Elevation above sea level; EL = 87 ft; per ASCE 7 Hazard Tool

Concrete Design Information

Compressive Strength; $f'_c = 4000 \text{ psi}$; (for durability, minimum 2,500psi strength used

for design)

Soil Design Values (per Geotechnical Report)

Allowable Soil Bearing; $P_{b,a} = 1000 \text{ psf}$; per Geotech

Soil Subgrade Modulus; $K = 200 \text{ lb/in}^3$; per Geotech

Wind Loading

Wind Exposure C

Basic Wind Speed; V = 96; mph per ASCE 7 Hazard Tool

Nitrogen Tank

Design Horiz. Wind Pressure; $P_{wh,NT} = 8.96 \text{ psf}$; per Wind Load Generation Design Vert. Wind Pressure; $P_{wv,NT} = 8.96 \text{ psf}$; per Wind Load Generation

P2K Pump Skid

Design Horiz. Wind Pressure; $P_{wh,PS} = 19.99 \text{ psf}$; per Wind Load Generation Design Vert. Wind Pressure; $P_{wv,PS} = 19.99 \text{ psf}$; per Wind Load Generation

Nikkiso Cryoquip Vaporizer

Design Horiz. Wind Pressure; $P_{Wh,NCV} = 23.22 \text{ psf}$; per Wind Load Generation Design Vert. Wind Pressure; $P_{Wv,NCV} = 23.22 \text{ psf}$; per Wind Load Generation

Pressure Control Manifold

Design Horiz. Wind Pressure; $P_{Wh,PCM} = 19.99 \text{ psf}$; per Wind Load Generation Design Vert. Wind Pressure; $P_{Wv,PCM} = 19.99 \text{ psf}$; per Wind Load Generation

ASME Tube

Design Horiz. Wind Pressure; $P_{Wh,ASME} = 19.99 \text{ psf}$; per Wind Load Generation Design Vert. Wind Pressure; $P_{Wv,ASME} = 19.99 \text{ psf}$; per Wind Load Generation

Thermax Vaporizer

Design Horiz. Wind Pressure; $P_{wh,TV} = 23.85 \text{ psf}$; per Wind Load Generation Design Vert. Wind Pressure; $P_{wv,TV} = 23.85 \text{ psf}$; per Wind Load Generation

Seismic Loading

 $\begin{array}{lll} \mbox{Seismic Importance Factor;} & \mbox{I}_e = 1.0; & \mbox{per ASCE 7 Table 1.5-2} \\ \mbox{Soil Class} & \mbox{E} & \mbox{per Geotechnical Report} \\ \mbox{Seismic Design Category} & \mbox{D} & \mbox{per Geotechnical Report} \\ \end{array}$

 $\begin{array}{lll} \mbox{Spectral Response (short);} & S_s = 0.864; g & \mbox{per Geotechnical Report} \\ \mbox{Spectral Response (1s);} & S_1 = 0.415; g & \mbox{per Geotechnical Report} \\ \mbox{Spectral Acceleration (short);} & S_{DS} = 0.665; g & \mbox{per Geotechnical Report} \\ \mbox{Spectral Acceleration (1s);} & S_{D1} = 0.522; g & \mbox{per Geotechnical Report} \\ \end{array}$

Vertical Seismic Coefficient; $0.2 \times S_{DS} = 0.133$

Nitrogen Tank

Seismic Response Coefficient; $C_{s,NT} = 0.333$; per Seismic Load Generation

P2K Pump Skid

Seismic Response Coefficient; $C_{s,PS} = 0.200$; per Seismic Load Generation

Nikkiso Cryoquip Vaporizer

Seismic Response Coefficient; $C_{s,NCV} = 0.333$; per Seismic Load Generation

Pressure Control Manifold

Seismic Response Coefficient; C_{s,PCM} = 0.200; per Seismic Load Generation

ASME Tube

Seismic Response Coefficient; $C_{s,ASME} = 0.200$; per Seismic Load Generation

Thermax Vaporizer

Seismic Response Coefficient; $C_{s,TV} = 0.333$; per Seismic Load Generation

project	2501-0033	date	9/3/202	25	
designer	CTN	sheet	5	of	82

Load Generation

Wind Load Generation

Nitrogen Tank

ASCE 7-16 Chapter 29: Wind Loads on Other Structures - Directional Procedure (Chimneys and Tanks)

Wind Design Criteria:

Secondary Structure Information:

Secondary Structure Type =	Round	
Secondary Structure Height, H =	19	ft
Secondary Structure Diameter, D =	7.17	ft
Depth of Protruding Elements, D' =	0	ft

Primary Structure Information:

Primary Structure Height, h =	0	ft
Primary Structure Length, d =	0	ft
Primary Structure Width, b =	0	ft

Wind Pressures:

Chimney or Tank, Therefore Wind Pressure, Pw = qz·G·Cf, Per ASCE7-16 EQ. 29.4-1

Length Side Pressures:

Area of Length Side,
$$A_1 = 136.23$$
 $ft^2 = H \cdot D$ $Cf = 0.53$ ASCE 7-16 29.4-1

Wind Pressure, $P_{w1} = 8.96$ psf Total Wind Force, $F_{w1} = 1221$ lb

Width Side Pressures:

Area of Length Side,
$$A_2 = 136.23$$

$$Cf = 0.53$$
ASCE 7-16 29.4-1

Wind Pressure, $P_{w2} = 8.96$
Total Wind Force, $F_{w2} = 1221$
Ib

P2K Pump Skid

ASCE 7-16 Chapter 29: Wind Loads on Other Structures - Directional Procedure (Rooftop Structures and Equipment for Buildings)

Wind Design Criteria:

Basic Wind Speed (3 sec Gust) = Exposure =	96 C	МРН
Exposure Coefficient, K _h =	0.85	ASCE 7-16 Table 26.10-1
Topography Factor, K_{zt} =	1	ASCE 7-16 Sec. 26.8.2
Directionality Factor, K _d =	1.00	ASCE 7-16 Tab. 26.6-1
Ground Elevation Factor, K _e =	1.00	ASCE 7-16 Table 26.9-1
Gust Factor, G =	0.85	ASCE 7-16 Sec. 26.11
Velocity Pressure, q _h =	19.99	psf = $0.00256 \cdot K_h \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2$

Secondary Structure Information:

Secondary Structure Height, H =	6.7	ft
Secondary Structure Length, L =	6	ft
Secondary Structure Width, B =	5.67	ft

Primary Structure Information:

Primary Structure Height, h =	0	ft
Primary Structure Length, d =	0	ft
Primary Structure Width, b =	0	ft

Wind Pressures:

Rooftop Structure or Equipment. Therefore Wind Pressure, Pw = qh·(GCr)·A, per ASCE7-16 EQ. 29.4-2

Length Side Pressures:

Area of Length Side,
$$A_1 = 40.20$$
 $ft^2 = H \cdot D$ $ASCE 7-16 29.4.1$

Wind Pressure, $P_{w1} = 19.99$ psf Total Wind Force, $F_{w1} = 804$ lb

Width Side Pressures:

Area of Width Side,
$$A_2 = 37.99$$
 ft² = H·B ASCE 7-16 29.4.1

Wind Pressure, $P_{w2} = 19.99$ psf Total Wind Force, $F_{w2} = 759$ lb

Uplift Pressure:

Area of Top Face,
$$A_3 = 34.02$$
 ft²

$$GCr = 1.00$$
 ASCE 7-16 29.4.1

Wind Pressure, $P_{w3} = 19.99$ psf
Total Wind Force, $F_{w3} = 680$ lb

project	2501-0033	date	9/3/202	25	
designer	CTN	sheet	7	of	82

Nikkiso Cryoquip Vaporizer

ASCE 7-16 Chapter 29: Wind Loads on Other Structures - Directional Procedure (Chimneys and Tanks)

Wind Design Criteria:

Basic Wind Speed (3 sec Gust) =	96	MPH
Exposure =	С	

Exposure Coefficient, K _z =	0.85	ASCE 7-16 Table 26.10-1
Topography Factor, K_{zt} =	1	ASCE 7-16 Sec. 26.8.2
Directionality Factor, K _d =	1.00	ASCE 7-16 Table 26.6-1
Ground Elevation Factor, K _e =	1.00	ASCE 7-16 Table 26.9-1
Gust Factor, G =	0.85	ASCE 7-16 Sec. 26.11
Velocity Pressure, $q_z =$	19.99	$psf = 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2$

Secondary Structure Information:

Primary Structure Information:

Wind Pressures:

Chimney or Tank, Therefore Wind Pressure, Pw = qz·G·Cf, Per ASCE7-16 EQ. 29.4-1

Length Side Pressures:

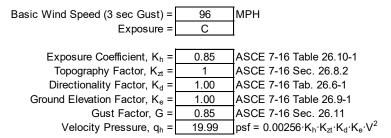
Area of Length Side,
$$A_1 = 86.86$$
 $ft^2 = H \cdot D$ ASCE 7-16 29.4-1

Wind Pressure,
$$P_{w1} =$$
 22.93 psf Total Wind Force, $F_{w1} =$ **1992** lb

Width Side Pressures:

Area of Length Side,
$$A_2 = 69.56$$
 sq ft = H·B
Cf = 1.37 ASCE 7-16 29.4-1

Wind Pressure,
$$P_{w2} =$$
 23.22 psf
Total Wind Force, $F_{w2} =$ 1615 lb



_project 2501-0033 date 9	3,3,2023		
designer CTN sheet	8	of 8	2

Pressure Control Manifold

ASCE 7-16 Chapter 29: Wind Loads on Other Structures - Directional Procedure (Rooftop Structures and Equipment for Buildings)

Wind Design Criteria:

Secondary Structure Information:

Secondary Structure Height, H =	3.33	ft
Secondary Structure Length, L =	4.42	ft
Secondary Structure Width, B =	1	ft

Primary Structure Information:

Primary Structure Height, h =	0	ft
Primary Structure Length, d =	0	ft
Primary Structure Width, b =	0	ft

Wind Pressures:

Rooftop Structure or Equipment. Therefore Wind Pressure, Pw = qh·(GCr)·A, per ASCE7-16 EQ. 29.4-2

Length Side Pressures:

Area of Length Side,
$$A_1 = 14.72$$
 $ft^2 = H \cdot D$ ASCE 7-16 29.4.1

Wind Pressure, $P_{w1} = 19.99$ psf Total Wind Force, $F_{w1} = 294$ lb

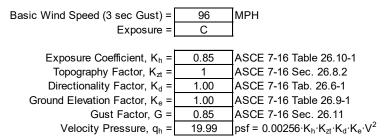
Width Side Pressures:

Area of Width Side,
$$A_2 = 3.33$$
 $ft^2 = H \cdot B$ $GCr = 1.00$ ASCE 7-16 29.4.1

Wind Pressure, $P_{w2} = 19.99$ psf Total Wind Force, $F_{w2} = 67$ lb

Uplift Pressure:

Area of Top Face,
$$A_3 = 4.42$$
 ft^2 $\text{GCr} = 1.00$ ASCE 7-16 29.4.1


Wind Pressure, $P_{w3} = 19.99$ psf Total Wind Force, $F_{w3} = 88$ lb

ASME Tube

ASCE 7-16 Chapter 29: Wind Loads on Other Structures - Directional Procedure (Rooftop Structures and Equipment for Buildings)

Wind Design Criteria:

Secondary Structure Information:

Secondary Structure Height, H =	7.1	ft
Secondary Structure Length, L =	26.22	ft
Secondary Structure Width, B =	2.43	ft

Primary Structure Information:

Primary Structure Height, h =	0	ft
Primary Structure Length, d =	0	ft
Primary Structure Width, b =	0	ft

Wind Pressures:

Rooftop Structure or Equipment. Therefore Wind Pressure, Pw = qh·(GCr)·A, per ASCE7-16 EQ. 29.4-2

Length Side Pressures:

Area of Length Side,
$$A_1 = \begin{bmatrix} 186.16 \\ GCr = \end{bmatrix}$$
 ft² = H·D ASCE 7-16 29.4.1
Wind Pressure, $P_{w1} = \begin{bmatrix} 19.99 \\ Total Wind Force, F_{w1} = \end{bmatrix}$ psf Ib

Width Side Pressures:

Area of Width Side,
$$A_2 = 17.25$$
 $ft^2 = H \cdot B$ $GCr = 1.00$ ASCE 7-16 29.4.1

Wind Pressure, $P_{w2} = 19.99$ psf $It = 19.99$ Total Wind Force, $F_{w2} = 345$ $It = 19.99$ $It = 19.99$

Uplift Pressure:

Area of Top Face,
$$A_3 = 63.71$$
 ft² GCr = 1.00 ASCE 7-16 29.4.1

Wind Pressure, $P_{w3} = 19.99$ psf
Total Wind Force, $F_{w3} = 1274$ lb

Thermax Vaporizer

<u>ASCE 7-16 Chapter 29: Wind Loads on Other Structures - Directional Procedure</u> (Chimneys and Tanks)

Wind Design Criteria:

Basic Wind Speed (3 sec Gust) =	96	МРН
Exposure =	С	

Exposure Coefficient, K_z =	0.85	ASCE 7-16 Table 26.10-1
Topography Factor, K_{zt} =	1	ASCE 7-16 Sec. 26.8.2
Directionality Factor, K _d =	1.00	ASCE 7-16 Table 26.6-1
Ground Elevation Factor, K _e =	1.00	ASCE 7-16 Table 26.9-1
Gust Factor, G =	0.85	ASCE 7-16 Sec. 26.11
Velocity Pressure, q _z =	19.99	$psf = 0.00256 \cdot K_z \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2$

Secondary Structure Information:

Primary Structure Information:

Wind Pressures:

Chimney or Tank, Therefore Wind Pressure, Pw = qz·G·Cf, Per ASCE7-16 EQ. 29.4-1

Length Side Pressures:

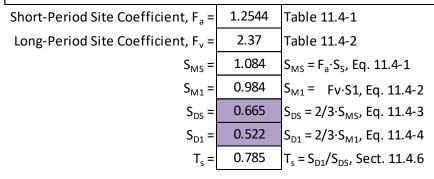
Area of Length Side,
$$A_1 = 33.04$$
 $ft^2 = H \cdot D$
 $Cf = 1.36$ ASCE 7-16 29.4-1

Wind Pressure,
$$P_{w1} =$$
 23.18 psf
Total Wind Force, $F_{w1} =$ 766 lb

Width Side Pressures:

Area of Length Side,
$$A_2 = 22.53$$
 sq ft = H·B
Cf = 1.40 ASCE 7-16 29.4-1

Wind Pressure,
$$P_{w2} =$$
 23.85 psf
Total Wind Force, $F_{w2} =$ 538 lb



	project	2501-0033	date	9/3/202	5		
•	designer	CTN	sheet	11	of	82	

<u>Seismic Load Generati</u>on

Design Spectral Acceleration Parameters - ASCE 7-16 Chapter 11

Seismic Design Category - ASCE 7-16 Chapter 11

Seismic Design Category for S_{DS} =	D	Table 11.6-1
Seismic Design Category for S_{D1} =	D	Table 11.6-2
Seismic Design Category =	D	Most critical of the cases above

Exception 1 per section 11.4.8 Item 2 is applicable

project	2501-0033	date	9/3/202	5	
designer	CTN	sheet	12	of	82

Nitrogen Tank

Seismic Base Shear - Non-Building Structures - ASCE 7-16 Chapter 15

Importance Factor, $I_E = 1.00$ Table 1.5-2 Height, $h_n = 19.00$ ft.

Structure Type = | Not Similar to Buildings (Table 15.4-2):

Elevated tanks, vessels, bins or hoppers on unbraced legs or asymmetrically braced legs (not similar to buildings)

Response Mod. Coef., R = 2.00 Table 15.4-1 and 15.4-2

Overstrength Factor, Ω_0 = 2.00 Table 15.4-1 and 15.4-2 Defl. Amplif. Factor, C_d = 2.5 Table 15.4-1 and 15.4-2

Building Height Limit = 100.0 ft, Table 15.4-1 and 15.4-2

Building Height Okay for Seismic Force Resisting System

Fundamental Period

Actual Calc. Period, $T_c = \frac{1}{100}$ from analysis (calculated if blank) Assumed Period, $T_a = \frac{1}{100}$ sec., $T_a = T_s$, ASCE 7 Section C.15.4.4 Natural Period, $T_n = \frac{1}{100}$ sec., $T_a = T_a$

Seismic Base Shear Coefficient Boundaries

 $C_s = 0.333$ Cs = SDS/(R/I) $C_s(max) = 0.333$ Cs = SD1/[T·(R/I)] $C_s(min) = 0.030$ $Cs = 0.044 \cdot SDS \cdot I \ge 0.03$

Seismic Coefficient

Base Shear Coefficient, $C_s = 0.333$ g's, $Eh = W \cdot Cs$, Eqn. 12.8-1 Vert. Seismic Coeff., $0.2*S_{DS} = 0.133$ g's, $E_v = 0.2S_{DS}$. Section 12.4-4a

project 2	2501-0033	date 9/	3/2025		
designer C	CTN	sheet	13	of	82

P2K Pump Skid

Seismic Base Shear - Non-Structural Components - ASCE 7-16 Chapter 13

Importance Factor, $I_p = 1.00$ Section 13.1.3

Height, h = 6.70 ft

Attachment Height, z = 0.00 ft

Structure Type = Seismic Coefficients for Mechanical and Electrical Components (ASCE Table 13.6-1):

Engines, turbines, pumps, compressors, and pressure vessels not supported on skirts and not within the scope of Chapter 15 (Nonbuilding structures)

Amplification Factor, $a_p = 1.0$ Table 13.5-1 & Table 13.6-1 Response Mod. Coef., $R_p = 2.50$ Table 13.5-1 & Table 13.6-1 Overstrength Factor, $\Omega_o = 2.00$ Table 13.5-1 & Table 13.6-1

Horizontal Component - Seismic Design Coefficients

$$\begin{split} F_{ph}/W_p &= \begin{array}{ccc} 0.106 & F_{ph} = (0.4^*a_p^*S_{DS}^*W_p)^*(1+2^*z/h)/(R_p/I_p), \text{ Eqn. } 13.3\text{-}1 \\ F_{ph(max)}/W_p &= \begin{array}{ccc} 1.064 & F_{ph} = 1.6^*S_{DS}^*W_p^*I_p, \text{ Eqn. } 13.3\text{-}2 \\ F_{ph(min)}/W_p &= \begin{array}{ccc} 0.200 & F_{ph} = 0.3^*S_{DS}^*W_p^*I_p, \text{ Eqn. } 13.3\text{-}3 \\ \end{split}$$

Seismic Coefficients

$$F_{ph}/W_p = 0.200$$
 $F_{pv}/W_p = 0.133$
 $F_{pv} = 0.2*S_{DS}*W_p$, ASCE 7 Eqn. 12.4-4

 W_p = working load

multiply (F_p/W_p) by W_p to find force on component

project 2501	0033 date	9/3/2025		
designer CTN	sheet	: 14	of	82

Nikkiso Cryoquip Vaporizer

Seismic Base Shear - Non-Building Structures - ASCE 7-16 Chapter 15

Importance Factor, $I_E = 1.00$ Table 1.5-2 Height, $h_n = 18.60$ ft.

Structure Type = Not Similar to Buildings (Table 15.4-2):

Elevated tanks, vessels, bins or hoppers on unbraced legs or asymmetrically braced legs (not similar to buildings)

Response Mod. Coef., R = 2.00 Table 15.4-1 and 15.4-2 Overstrength Factor, Ω_0 = 2.00 Table 15.4-1 and 15.4-2 Defl. Amplif. Factor, C_d = 2.5 Table 15.4-1 and 15.4-2 Building Height Limit = 100.0 ft, Table 15.4-1 and 15.4-2

Building Height Okay for Seismic Force Resisting System

Fundamental Period

Actual Calc. Period, $T_c = \frac{1}{100}$ from analysis (calculated if blank)

Assumed Period, $T_a = \frac{1}{100}$ sec., $T_a = T_s$, ASCE 7 Section C.15.4.4

Natural Period, $T_n = \frac{1}{100}$ sec., $T_a = T_a$

Seismic Base Shear Coefficient Boundaries

 $C_s = 0.333$ Cs = SDS/(R/I) $C_s(max) = N/A$ N/A Position 1 N/A = 1.4.8 Position 1 Position 1 Position 2 Position 1 Position 3 Position 3 Position 3 Position 4 Position 3 Position 4 Po

Seismic Coefficient

Base Shear Coefficient, $C_s = 0.333$ g's, $Eh = W \cdot Cs$, Eqn. 12.8-1 Vert. Seismic Coeff., $0.2*S_{DS} = 0.133$ g's, $E_v = 0.2S_{DS}$. Section 12.4-4a

project	2501-0033	date	9/3/2025	5	
designer	CTN	sheet	15	of	82

Pressure Control Manifold

Seismic Base Shear - Non-Structural Components - ASCE 7-16 Chapter 13

Importance Factor, $I_p = 1.00$ Section 13.1.3

Height, h = 3.33 ft

Attachment Height, z = 0.00 ft

Structure Type = Seismic Coefficients for Mechanical and Electrical Components (ASCE Table 13.6-1):

Piping in accordance with ASME B31, including in-line components, constructed of high- or limited deformability materials, with joints made by threading, bonding, compression couplings, or grooved couplings

Amplification Factor, $a_p = 2.5$ Table 13.5-1 & Table 13.6-1 Response Mod. Coef., $R_p = 6.00$ Table 13.5-1 & Table 13.6-1 Overstrength Factor, $\Omega_0 = 2.00$ Table 13.5-1 & Table 13.6-1

Horizontal Component - Seismic Design Coefficients

$$\begin{split} F_{ph}/W_p &= \begin{array}{ccc} 0.111 & F_{ph} = (0.4^*a_p^*S_{DS}^*W_p)^*(1+2^*z/h)/(R_p/I_p), \text{ Eqn. } 13.3\text{-}1 \\ F_{ph(max)}/W_p &= \begin{array}{ccc} 1.064 & F_{ph} = 1.6^*S_{DS}^*W_p^*I_p, \text{ Eqn. } 13.3\text{-}2 \\ F_{ph(min)}/W_p &= \begin{array}{ccc} 0.200 & F_{ph} = 0.3^*S_{DS}^*W_p^*I_p, \text{ Eqn. } 13.3\text{-}3 \\ \end{split}$$

Seismic Coefficients

$$F_{ph}/W_p = 0.200$$
 $F_{pv}/W_p = 0.133$
 $F_{pv} = 0.2*S_{DS}*W_p$, ASCE 7 Eqn. 12.4-4

 W_p = working load

multiply (F_p/W_p) by W_p to find force on component

project	2501-0033	date	9/3/202	5		
designer	CTN	sheet	16	of	82	

ASME Tube

Seismic Base Shear - Non-Structural Components - ASCE 7-16 Chapter 13

Importance Factor,
$$I_p = \begin{bmatrix} 1.00 \\ \text{Height, h} = \end{bmatrix}$$
 Section 13.1.3
Attachment Height, $z = \begin{bmatrix} 0.00 \\ \text{ft} \end{bmatrix}$

Structure Type = Seismic Coefficients for Mechanical and Electrical Components (ASCE Table 13.6-1):

> Engines, turbines, pumps, compressors, and pressure vessels not supported on skirts and not within the scope of Chapter 15 (Nonbuilding structures)

Amplification Factor, $a_p =$	1.0	Table 13.5-1 & Table 13.6-1
Response Mod. Coef., R _p =	2.50	Table 13.5-1 & Table 13.6-1
Overstrength Factor, Ω_o =	2.00	Table 13.5-1 & Table 13.6-1

Horizontal Component - Seismic Design Coefficients

$$\begin{split} F_{ph}/W_p &= \begin{array}{ccc} 0.106 & F_{ph} = (0.4^*a_p^*S_{DS}^*W_p)^*(1+2^*z/h)/(R_p/I_p), \text{ Eqn. 13.3-1} \\ F_{ph(max)}/W_p &= \begin{array}{ccc} 1.064 & F_{ph} = 1.6^*S_{DS}^*W_p^*I_p, \text{ Eqn. 13.3-2} \\ F_{ph(min)}/W_p &= \begin{array}{ccc} 0.200 & F_{ph} = 0.3^*S_{DS}^*W_p^*I_p, \text{ Eqn. 13.3-3} \\ \end{split}$$

Seismic Coefficients

$$F_{ph}/W_p = 0.200$$
 $F_{pv}/W_p = 0.133$
 $F_{pv} = 0.2*S_{DS}*W_p$, ASCE 7 Eqn. 12.4-4

 W_p = working load

multiply (F_p/W_p) by W_p to find force on component

project	2501-0033	date	9/3/2025	5		
designer	CTN	sheet	17	of	82	

Thermax Vaporizer

Seismic Base Shear - Non-Building Structures - ASCE 7-16 Chapter 15

Importance Factor, $I_E = 1.00$ Table 1.5-2 Height, $h_n = 12.66$ ft.

Structure Type = Not Similar to Buildings (Table 15.4-2):

Elevated tanks, vessels, bins or hoppers on unbraced legs or asymmetrically braced legs (not similar to buildings)

Response Mod. Coef., R = 2.00 Table 15.4-1 and 15.4-2 Overstrength Factor, Ω_0 = 2.00 Table 15.4-1 and 15.4-2 Defl. Amplif. Factor, C_d = 2.5 Table 15.4-1 and 15.4-2 Building Height Limit = 100.0 ft, Table 15.4-1 and 15.4-2

Building Height Okay for Seismic Force Resisting System

Fundamental Period

Actual Calc. Period, $T_c = \frac{1}{100}$ from analysis (calculated if blank)

Assumed Period, $T_a = \frac{1}{100}$ sec., $T_a = T_s$, ASCE 7 Section C.15.4.4

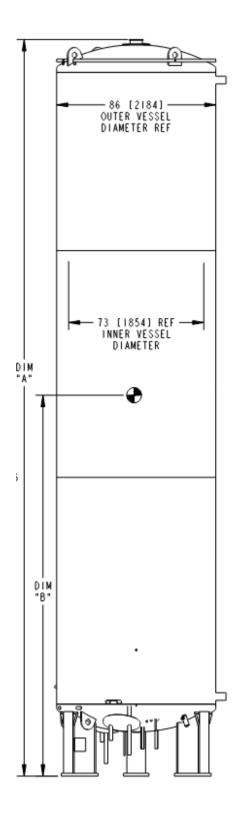
Natural Period, $T_n = \frac{1}{100}$ sec., $T_a = T_a$

Seismic Base Shear Coefficient Boundaries

 $C_s = 0.333$ Cs = SDS/(R/I) $C_s(max) = N/A$ N/A Cs = 1.4.8 Cs = 1.4.8

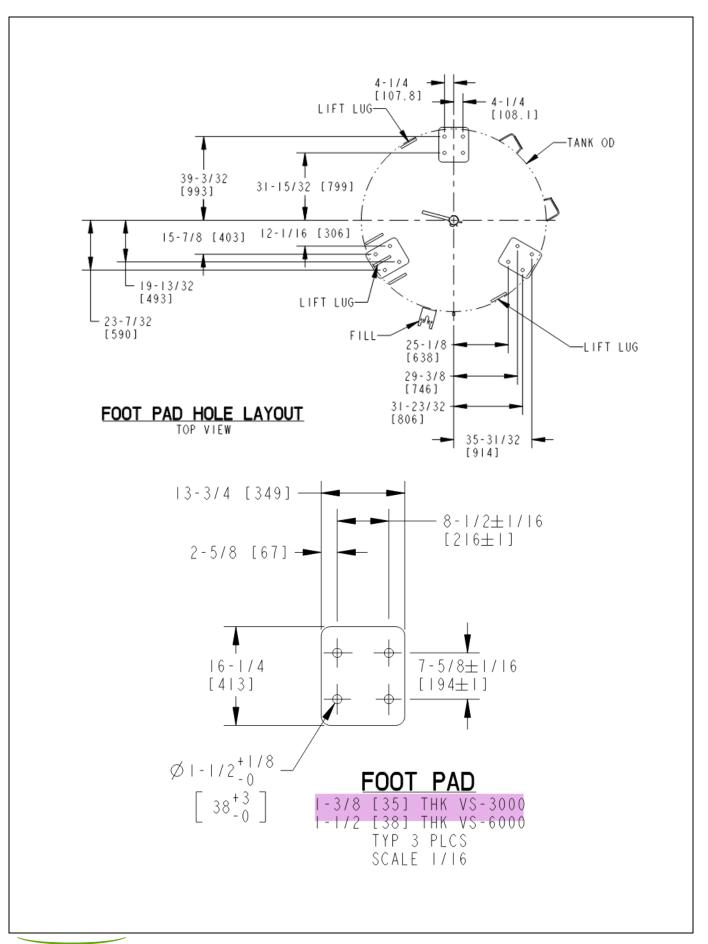
Seismic Coefficient

Base Shear Coefficient, $C_s = 0.333$ g's, $Eh = W \cdot Cs$, Eqn. 12.8-1 Vert. Seismic Coeff., $0.2*S_{DS} = 0.133$ g's, $E_v = 0.2S_{DS}$, Section 12.4-4a



project	2501-0033	date	9/3/202	5	
designer	CTN	sheet	18	of	82

Structural Calculations


Nitrogen Tank Anchorage

Drawings

project	2501-0033	date	9/3/202	25	
designer	CTN	sheet	19	of	82

project	2501-0033	date	9/3/202	25		
designer	CTN	sheet	20	of	82	

WEIGHTS AND SHIPPING DATA										
	MODEL:			VS-3	8000			VS-6	000	
MAWP	P:	SIG	175	250	400	500	175	250	400	500
WAWF	b	arg	12.07	17.24	27.58	34.47	12.07	17.24	27.58	34.47
WEIGHT	PO	UNDS	11,100	12,800	15,100	15,100	19,900	21,500	27,000	27,100
EMPTY	KILC	GRAMS	4,990	5,806	6,849	6,849	9,026	9,752	12,247	12,292
	OXYGEN	POUNDS	40,600	42,400	44,700	44,700	76,400	78,000	83,500	83,600
	OXIGEN	KILOGRAMS	18,416	19,232	20,276	20,276	34,654	35,380	37,875	37,920
WEIGHT	NITROGEN	POUNDS	32,000	33,800	36,100	36,100	59,900	61,500	67,000	67,100
FULL		KILOGRAMS	14,514	15,331	16,375	16,375	27,170	27,896	30,391	30,436
	ARGON	POUNDS	47,200	49,000	51,300	51,300	88,900	90,500	96,000	96,100
	ARGON	KILOGRAMS	21,410	22,226	23,269	23,269	40,324	41,050	43,545	43,590
SHIPPING	INCHES (L * W * H)		228 x 8	36 x 86			383 x 8	36 x 86	
DIMENSIONS	MM'S (L * W * H)	5,	791 x 2,	184 x 2,1	184	9,	728 x 2,	184 x 2,1	184

TANK HEIGHT							
MODEL	DIM "A" REF	DIM "B" REF					
VS-3000	228 [5791]	131 [3315]					
VS-6000	383 [9728]	206 [5236]					

project 250	1-0033 date	9/3/2025)	
designer CTN	sheet	: 21	of	82

Geometry & Weight

Dry/Shipping Weight; $W_D = 12800 \text{ lb}$; per Dwgs – Nitrogen Tank Wet/Operating Weight; $W_W = 33800 \text{ lb}$; per Dwgs – Nitrogen Tank

Tank Outer Diameter; D = 86 in = 7.17 ft; per Dwgs – Nitrogen Tank Tank Height; H = 228 in = 19.00 ft; per Dwgs – Nitrogen Tank

Vertical Center of Gravity; $CG_z = 131$ in = 10.92 ft; per Dwgs – Nitrogen Tank Horizontal Center of Gravity; $CG_x = D/2 = 3.58$ ft; assumed Horizontal Center of Gravity; $CG_y = D/2 = 3.58$ ft; assumed

Vertical Center of Area; $CA_z = H / 2 = 9.50 \text{ ft};$

Horizontal Eccentricity x; $e_x = abs[D / 2 - CG_x] = 0.00$ in; (parallel to x) Horizontal Eccentricity y; $e_y = abs[D / 2 - CG_y] = 0.00$ in; (parallel to y)

 $\label{eq:local_$

 $\begin{array}{ll} \mbox{Anchors per Leg;} & \mbox{$N_{aL}=6$;} \\ \mbox{Anchor Diameter;} & \mbox{$D_a=1$; in} \\ \end{array}$

Dead Loads

Dry Dead Load; $W_D = 12800 \text{ lb};$ (1.0D)

Dry Dead Load Moment; $M_{Dx,D} = W_D \times (d / 2 + e_y) = 38071 \text{ lb_ft};$ (1.0D)

Dry Dead Load per Leg; $D_{a,D} = W_D / N_L = 4267 \text{ lb};$ (1.0D)

Wet Dead Load; $W_W = 33800 \text{ lb};$ (1.0D)

Wet Dead Load Moment; $M_{Dx,W} = W_W \times (d / 2 + e_y) = 100532 \text{ lb_ft};$ (1.0D)

Wet Dead Load per Leg; $D_{a,W} = W_W / N_L = 11267 \text{ lb};$ (1.0D)

Seismic Loads

Design Seismic Coefficient; $C_{s,NT} = 0.333$; Overstrength Factor; $\Omega_0 = 2.0$;

Seismic Vertical Load; $F_{pv} = W_W \times 0.2 \times S_{DS} = 4495 \text{ lb};$ (1.0E)

Seismic Horizontal Load; $F_{ph} = W_W \times C_{s,NT} = 11255 \text{ lb};$ (1.0E)

Seismic Overturning Moment; $M_{Ex} = F_{ph} \times CG_z + F_{pv} \times (d/2 + e_y) = 136242 \text{ lb_ft};$ (1.0E)

Seismic Horizontal Load w/ Ω_0 ; $V_{E\Omega} = \Omega_0 \times F_{ph} = 22511$ lb; $(\Omega_0 E_h)$

Overturning Moment w/ Ω_0 ; $M_{Ex\Omega} = \Omega_0 \times F_{ph} \times CG_z + F_{pv} \times (d/2 + e_v)$

 $M_{Ex\Omega}$ = **259114** lb ft; (about x) $(\Omega_0 E_h + 1.0 E_v)$

Seismic Shear per Leg w/ Ω_o ; $V_{Ea,\Omega} = V_{E\Omega} / N_L = 7504 \text{ lb}$; $(\Omega_o E_h)$

Seismic Tension per Leg w/ Ω_0 ; $T_{Ea,\Omega} = 4 \times \Omega_0 \times F_{ph} \times CG_z / (N_L \times d) + F_{pv} / N_L$;

 $T_{Ea,\Omega} = 56579 \text{ lb};$ $(\Omega_0 E_h + 1.0 E_v)$

project	2501-0033	date	9/3/2025		
designer	CTN	sheet	22	of	82

Wind Loads

Wind Vertical Load;	$F_{Wv} = P_{wv} \times \pi \times (D / 2)^2 = 0 \text{ lb};$	(1.0W)
---------------------	---	--------

Wind Horizontal Load; $F_{Wh} = P_{wh} \times D \times H = 1220 \text{ lb};$ (1.0W)

Wind Overturning Moment; $M_{Wx} = F_{Wh} \times CA_z + F_{Wv} \times d / 2 = 11591 \text{ lb_ft};$ (1.0W)

Wind Shear per Leg; $V_{Wa} = F_{Wh} / N_L = 407 \text{ lb}$; (1.0W)

Wind Tension per Leg; $T_{Wa} = 4 \times F_{Wh} \times CA_z / (N_L \times d) + F_{Wv} / N_L$;

 $T_{Wa} = 2598 \text{ lb};$ (1.0W)

Factored Loads

Seismic

Required Base Shear; $V_{u,E\Omega} = V_{E\Omega} = 22511 \text{ lb};$ $(\Omega_o E_h)$

Required Base Moment; $M_{u,Ex\Omega} = M_{Ex\Omega} - 0.9 \times M_{Dx,W}$

 $M_{u,Ex\Omega} = 168634 \text{ lb_ft};$ (0.9D + $\Omega_o E_h + 1.0 E_v$)

 $M_{u,Ex\Omega} > 0$, therefore consider overturning & anchor tension.

Req' Shear per Leg; $V_{u,Ea,\Omega} = V_{Ea,\Omega} = 7504 \text{ lb};$ $(\Omega_o E_h)$

Req' Tension per Leg; $T_{u,Ea,\Omega} = T_{Ea,\Omega} - 0.9 \times D_{a,W} = 46439 \text{ lb};$ (0.9D + $\Omega_0 E_h + 1.0 E_v$)

 $T_{u,Ea,\Omega} > 0$, therefore consider anchor tension.

Wind

Required Base Shear; $V_{u,W} = F_{Wh} = 1220 \text{ lb};$ (1.0W)

Required Base Moment; $M_{u,Wx} = M_{Wx} - 0.9 \times M_{Dx,D}$

 $M_{u,Wx} = -22674 \text{ lb_ft};$ (0.9D+ 1.0W)

 $M_{u.Wx}$ < 0, therefore no overturning or anchor tension.

Req' Shear per Leg; $V_{u.Wa} = V_{Wa} = 407 \text{ lb};$ (1.0W)

Req' Tension per Leg; $T_{u,Wa} = T_{Wa} - 0.9 \times D_{a,D} = -1242 \text{ lb};$ (0.9D + 1.0W)

 $T_{u,Wa}$ < 0, therefore no anchor tension.

project 2	2501-0033	date 9	/3/2025		
designer (CTN	sheet	23	of	82

Anchor Design

Horizontal Eccentricity x; $e_x = \mathbf{0}$ in; (parallel to x) Horizontal Eccentricity y; $e_y = \mathbf{0}$ in; (parallel to y)

Required Base Shear; $V_u = max(V_{u,E\Omega}, V_{u,w}) = 22511 \text{ lb};$ $(\Omega_o E_h)$

Required Base Moment; $M_u = max(0 lb_in, M_{u,Ex\Omega}, M_{u,Wx})$

 $M_u = 2023614 \text{ lb_in};$ $(0.9D + \Omega_o E_h + 1.0E_v)$

Seismic Loads control both shear and moment.

Required Shear per Leg; $V_u = max(V_{u,Ea,\Omega}, V_{u,Wa}) = 7504 \text{ lb};$ $(\Omega_o E_h)$ Required Tension per Leg; $T_u = max(0 \text{ lb}, T_{u,Ea,\Omega}, T_{u,Wa}) = 46439 \text{ lb};$ $(0.9D + \Omega_o E_h + 1.0E_v)$

Seismic loads control both shear and tension.

Anchor Side Edge Distance; $S_{a,1} = \pi \times d / N_L / 2 - 2.625$ in = **35** in; Anchor Interior Edge Distance; $S_{a,i} = d / 2 - 7.625$ in / 2 = 32 in;

(6) 1-inch diameter ASTM A 108 Type A AWS Headed Studs per tank leg, (18) anchors total. Anchor locations per drawings.

Anchor Embedment: 21-inches

Minimum Concrete Strength, f'c: ;2500 psi;

Minimum Slab/Housekeeping Pad Thickness: 24-inches

Minimum Edge Distance: 11.5-inches

Notes:

- Concrete must be continuous under unit.
- Anchors shall not be bent after being installed.
- The use of permanent shims is not permitted.
- Nuts, washers, and other hardware used with anchors shall have a material
 or alloy designation that is compatible with the anchor rod/alloy. Contact
 between dissimilar metals shall be isolated using phenolic or otherwise
 approved isolation hardware.
- Anchors shall be galvanized or stainless steel for fastening galvanized steel to concrete/masonry.
- Anchors shall be stainless steel for fastening aluminum or stainless steel to concrete/masonry.

project 2	2501-0033	date 9/	3/2025		
designer (CTN	sheet	24	of	82

^{*}See Appendix A for DeWalt Design Assist Outputs

Embedded Plate Weld Connection Design

Weld Size; D = (2/16) in = **0.125** in; Effective Throat Size; $t_e = D \times \sqrt{(2)} / 2 = \textbf{0.088}$ in; Minimum Weld Length; $l_w = 6$ in; (conservative)

Loading

Required Seismic Shear; $V_{u,E} = F_{ph} / N_L = 3752 \text{ lb};$ (1.0E)

Required Seismic Tension; $T_{u,E} = (4 \times F_{ph} \times CG_z / (N_L \times d) + F_{pv} / N_L) - (0.9 \times D_{a,W});$

 $T_{u,E} = 18899 \text{ lb};$ (0.9D + 1.0E)

Shear Strength

Weld Resistance Factor; $\phi = 0.75$;

Factored Strength; $\phi R_{n,v} = \phi \times (0.6 \times 70 \text{ksi}) \times t_e \times l_w = 16705 \text{ lb};$ per AISC Eq. J2-4

 $\phi R_{n,v} > V_{u,E}$, OK

Tensile Strength

Weld Resistance Factor; $\phi = 0.75$;

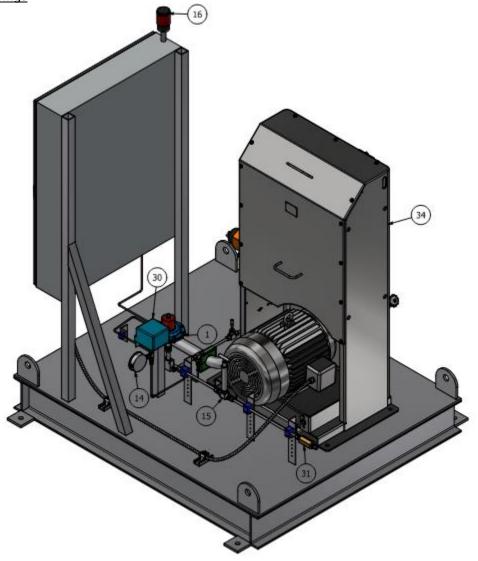
Factored Strength; $\phi R_{n,t} = \phi \times (0.6 \times 70 \text{ksi} \times (1.0 + 0.5 \times (\sin(90))^{1.5})) \times t_e \times l_w;$

 $\phi R_{n,t} = 25058 \text{ lb};$ per AISC Eq. J2-4

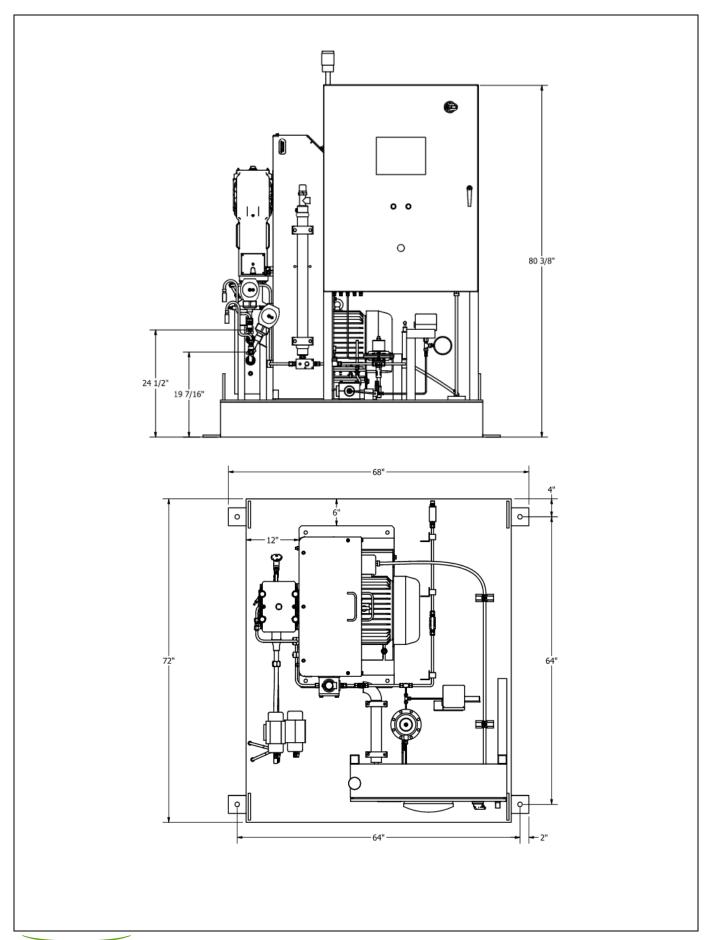
 $\phi R_{n,t} > T_{u,E}$, OK

Combined Strength Check

Combined Capacity; $\sqrt{((V_{u,E} / \phi R_{n,v})^2 + (T_{u,E} / \phi R_{n,t})^2)} = 0.79; < 1.0, OK$


Use a 1/8" Fillet Weld all around Tank Leg Baseplate to Embedded Plate Connection

	025	
designer CTN sheet 25	of	82


P2K Pump Skid

project	2501-0033	date	9/3/2025		
designer	CTN	sheet	26	of	82

project 250:				
designer CTN	sheet	27	of	82

Geometry & Weight

Dry/Shipping Weight; $W_D = 2235.749 \text{ lb}$; per Dwgs – P2K Pump Skid Wet/Operating Weight; $W_W = 2435.749 \text{ lb}$; per Client

Skid Length; L = 72 in = 6.00 ft; (parallel to x) per Dwgs - P2K Pump SkidSkid Width; W = 68 in = 5.67 ft; (parallel to y) per Dwgs - P2K Pump SkidSkid Height; H = 80.375 in = 6.70 ft; (parallel to z) per Dwgs - P2K Pump Skid

In these calculations, the x-axis is parallel to the length, the y-axis is parallel to the width and the z-axis is parallel to the height. Length, width and height are all defined above.

Vertical Center of Area; $CA_z = 1/2 \times H = 3.35 \text{ ft}$

Horizontal Eccentricity x; $e_x = abs[L/2 - CG_x] = 7.20$ in; (parallel to x) Horizontal Eccentricity y; $e_y = abs[W/2 - CG_y] = 6.80$ in; (parallel to y)

 $\begin{array}{lll} \mbox{Number of Anchors;} & \mbox{N}_a = 4; & \mbox{per Dwgs} - \mbox{P2K Pump Skid} \\ \mbox{Anchor Diameter;} & \mbox{D}_a = 0.375; \mbox{ in} & \mbox{per Dwgs} - \mbox{P2K Pump Skid} \\ \mbox{Anchor Spacing Length;} & \mbox{I} = 64 \mbox{ in} = \textbf{5.33} \mbox{ ft;} & \mbox{per Dwgs} - \mbox{P2K Pump Skid} \\ \mbox{Anchor Spacing Width;} & \mbox{w} = 64 \mbox{ in} = \textbf{5.33} \mbox{ ft;} & \mbox{per Dwgs} - \mbox{P2K Pump Skid} \\ \mbox{P2K Pump Skid} & \mbox{P2K Pump Skid} \\ \mbox{P3K Pump Skid} & \mbox{P3K Pump Skid}$

project	2501-0033	date	9/3/202	25	
designer	CTN	sheet	28	of	82

Dead Loads

Dry Dead Load;	$W_D = 2236$ lb; (parallel to z)	(1.0D)

Dry Dead Load Moment;
$$M_{Dx,D} = W_D \times (w/2 + e_v) = 7229 \text{ lb_ft; (about x)}$$
 (1.0D)

Dry Dead Load per Anchor;
$$D_{a,D} = W_D / N_a = 559 \text{ lb};$$
 (1.0D)

Wet Dead Load; $W_W = 2436 \text{ lb}$; (parallel to z) (1.0D)

Wet Dead Load Moment;
$$M_{Dx,W} = W_W \times (w/2 + e_y) = 7876 \text{ lb_ft}; \text{ (about x)}$$
 (1.0D)

Wet Dead Load per Anchor;
$$D_{a,W} = W_W / N_a = 609 \text{ lb};$$
 (1.0D)

Seismic Loads

Design Seismic Coefficient; $C_{s,PS} = 0.200$; Overstrength Factor; $\Omega_0 = 2.0$;

Seismic Vertical Load; $F_{pv} = W_W \times 0.2 \times S_{DS} = 324 \text{ lb; (parallel to z)}$ (1.0E)

Seismic Horizontal Load; $F_{ph} = W_W \times C_{s,PS} = 487 \text{ lb};$ (1.0E)

Seismic Overturning Moment; $M_{Ex} = F_{ph} \times CG_z + F_{pv} \times (w/2 + e_y) = 3223 \text{ lb_ft; (about x)}$ (1.0E)

Seismic Horizontal Load w/ Ω_0 ; $V_{E\Omega} = \Omega_0 \times F_{ph} = 974 \text{ lb}$; $(\Omega_0 E_h)$

Overturning Moment w/ Ω_0 ; $M_{Ex\Omega} = \Omega_0 \times F_{ph} \times CG_z + F_{pv} \times (w/2 + e_v)$

 $M_{Ex\Omega}$ = 5398 lb_ft; (about x) $(\Omega_o E_h + 1.0 E_v)$

Seismic Shear per Anchor; $V_{Ea,\Omega} = \Omega_0 \times F_{ph} / N_a = 244 \text{ lb};$ $(\Omega_0 E_h)$

Seismic Tension per Anchor; $T_{Ea,\Omega} = M_{Ex\Omega} / [w \times N_a / 2] = 506 \text{ lb};$ $(\Omega_o E_h + 1.0 E_v)$

Wind Load

Wind Vertical Load; $F_{Wv} = P_{wv,PS} \times L \times W = 680 \text{ lb; (parallel to z)}$ (1.0W)

Wind Horizontal Load; $F_{Wh} = P_{Wh,PS} \times L \times H = 803 \text{ lb; (parallel to y)}$ (1.0W)

Wind Overturning Moment; $M_{Wx} = F_{Wh} \times CA_z + F_{Wv} \times w / 2 = 4503 \text{ lb_ft; (about x)}$ (1.0W)

Wind Horizontal per Anchor; $V_{Wa} = F_{Wh} / N_a = 201 \text{ lb};$ (1.0W)

Wind Tension per Anchor; $T_{Wa} = M_{Wx} / [w \times N_a / 2] = 422 \text{ lb};$ (1.0W)

project	2501-0033	date	9/3/2025	5		
designer	CTN	sheet	29	of	82	

Factored Loads

Seismic

Required Base Shear w/ Ω_o ; $V_{u,E\Omega} = V_{E\Omega} = 974 \text{ lb}$; $(\Omega_o E_h)$

Required Base Moment w/ Ω_o ; $M_{u,Ex\Omega} = M_{Ex\Omega} - 0.9 \times M_{Dx,W}$

 $M_{u,Ex\Omega} = -1690 \text{ lb_ft; (about x)}$ (0.9D + $\Omega_o E_h + 1.0 E_v$)

 $M_{u,Ex\Omega}$ < 0, therefore no skid overturning or anchor tension.

Req' Shear per Anchor; $V_{u,Ea,\Omega} = V_{Ea,\Omega} = 244 \text{ lb};$ $(\Omega_o E_h)$

Req' Tension per Anchor; $T_{u,Ea,\Omega} = T_{Ea,\Omega} - 0.9 \times D_{a,W} = -42 \text{ lb};$ (0.9D + $\Omega_o E_h + 1.0 E_v$)

 $T_{u,Ea,\Omega}$ < 0, therefore no anchor tension.

Wind

Required Base Shear; $V_{u,w} = F_{wh} = 803 \text{ lb}$; (parallel to y) (1.0W)

Required Base Moment; $M_{u,Wx} = M_{Wx} - 0.9 \times M_{Dx,D} = -2003 \text{ lb_ft; (about x)}$ (0.9D+ 1.0W)

 $M_{u,Wx}$ < 0, therefore no skid overturning or anchor tension.

Req' Shear per Anchor; $V_{u,Wa} = V_{Wa} = 201 \text{ lb};$ (1.0W)

Req' Tension per Anchor; $T_{u,Wa} = T_{Wa} - 0.9 \times D_{a,D} = -81 \text{ lb}; \qquad (0.9D + 1.0W)$

 $T_{u,Wa}$ < 0, therefore no anchor tension.

project	2501-0033	date	9/3/202	25	
designer	CTN	sheet	30	of	82

Anchor Design

Required Shear per Anchor; $V_{uy} = max(V_{u,Ea,\Omega}, V_{u,Wa}) = 244$ lb; (parallel to y);

Required Shear per Anchor; $V_{ux} = if(I/w < 2, 0.3 \times V_{uy}, 0 \text{ lb}) = 73 \text{ lb}; (parallel to x);$ Required Tension per Anchor; $T_u = max(0 \text{ lb}, T_{u.Ea,\Omega}, T_{u.wa}) = 0 \text{ lb}; (parallel to z);$

Anchor Side Edge Distance; $S_{a,1} = 1/2 - 2in = 30$ in; (parallel to x) Anchor Interior Edge Distance; $S_{a,i} = w/2 - 2in = 30$ in; (parallel to y)

(;4;);0.375;-inch diameter ASTM F593 Stainless Steel Group 1 or 2 threaded

rods per skid. Anchor locations per drawings.

Anchor Embedment: 3-inches

Epoxy: DeWalt Pure 110+ or Hilti HIT-RE 500 V3 Minimum Concrete Strength, f'c: 2500 psi

Minimum Slab/Housekeeping Pad Thickness: 24-inches

Minimum Edge Distance: 4-inches

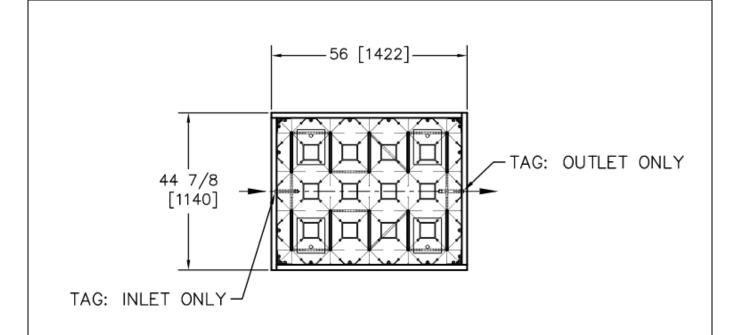
Optional Grout Pad Maximum Thickness: 2-inch

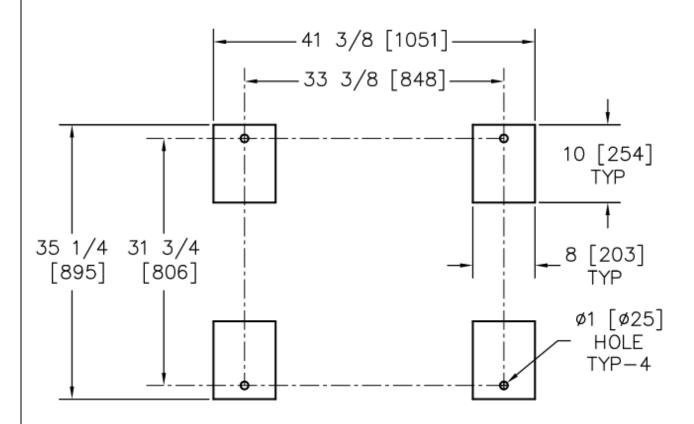
Minimum Grout Strength, f'c: 5000 psi

Grout shall be non-shrink conforming to ASTM C1107.

Notes:

- Concrete must be continuous under unit.
- Anchors shall not be bent after being installed.
- The use of permanent shims is not permitted.
- Nuts, washers, and other hardware used with anchors shall have a material
 or alloy designation that is compatible with the anchor rod/alloy. Contact
 between dissimilar metals shall be isolated using phenolic or otherwise
 approved isolation hardware.
- Anchors shall be galvanized or stainless steel for fastening galvanized steel to concrete/masonry.
- Anchors shall be stainless steel for fastening aluminum or stainless steel to concrete/masonry.


project 2	2501-0033	date 9/3	3/2025		
designer C	CTN	sheet	31	of	82


^{*}See Appendix A for DeWalt Design Assist Outputs

Nikkiso Cryoquip Vaporizer **Drawings** ø1 [ø25] LIFTING EYE TYP-4 PLC'S 223¹/4 [5671] 29 [737] 1/2 [13] THK. 15 7/8 [403] TYP 33 3/8 [848] 10 5/16 [262] TYP 31 3/4 [806]

designer CTN sheet 32 of 82		project	2501-0033	date	9/3/202	:5		
463.8.16.1 01.1 31.66t 32 01 02	•	designer	CTN	sheet	32	of	82	

ANCHOR BOLT PATTERN

project	2501-0033	date	9/3/202	5		
designer	CTN	sheet	33	of	82	
designer	CIN	sneet	33	OT	ŏ,	_

Geometry & Weight

Dry/Shipping Weight; $W_D = 1500 \text{ lb}$; per Dwgs – NC Vaporizer Wet/Operating Weight; $W_W = 4500 \text{ lb}$; per Dwgs – NC Vaporizer

Skid Length; L = 56 in = 4.67 ft; (parallel to x) per Dwgs – NC Vaporizer Skid Width; W = 44.875 in = 3.74 ft; (parallel to y) per Dwgs – NC Vaporizer Skid Height; H = 223.25 in = 18.60 ft; (parallel to z) per Dwgs – NC Vaporizer

In these calculations, the x-axis is parallel to the length, the y-axis is parallel to the width and the z-axis is parallel to the height. Length, width and height are all defined above.

Vertical Center of Gravity; $CG_z = 2/3 \times H = 12.40 \text{ ft; (parallel to z)}$ assumed Horizontal Center of Gravity; $CG_x = 0.5 \times L = 2.33 \text{ ft; (parallel to x)}$ assumed Horizontal Center of Gravity; $CG_y = 0.5 \times W = 1.87 \text{ ft; (parallel to y)}$ assumed

Vertical Center of Area; $CA_z = 1/2 \times H = 9.30 \text{ ft}$

Horizontal Eccentricity x; $e_x = abs[L/2 - CG_x] = 0.00$ in; (parallel to x) Horizontal Eccentricity y; $e_y = abs[W/2 - CG_y] = 0.00$ in; (parallel to y)

 $\begin{array}{lll} \mbox{Number of Anchors;} & \mbox{N}_a = 4; & \mbox{per Dwgs} - \mbox{NC Vaporizer} \\ \mbox{Anchor Diameter;} & \mbox{D}_a = 0.875; \mbox{in} & \mbox{per Dwgs} - \mbox{NC Vaporizer} \\ \mbox{Anchor Spacing Length;} & \mbox{I} = 33.375 \mbox{ in} = \textbf{2.78} \mbox{ ft;} & \mbox{per Dwgs} - \mbox{NC Vaporizer} \\ \mbox{Anchor Spacing Width;} & \mbox{w} = 31.75 \mbox{ in} = \textbf{2.65} \mbox{ ft;} & \mbox{per Dwgs} - \mbox{NC Vaporizer} \\ \mbox{NC Vaporizer} \\$

project	2501-0033	date	9/3/202			
designer	CTN	sheet	34	of	82	

Dead Loads

Dry Dead Load;	$W_D = 1500$ lb; (parallel to z)	(1.0D)	

Dry Dead Load Moment;
$$M_{Dx,D} = W_D \times (w/2 + e_v) = 1984 \text{ lb_ft}; \text{ (about x)}$$
 (1.0D)

Dry Dead Load per Anchor;
$$D_{a,D} = W_D / N_a = 375 \text{ lb};$$
 (1.0D)

Wet Dead Load; $W_W = 4500$ lb; (parallel to z) (1.0D)

Wet Dead Load Moment;
$$M_{Dx,W} = W_W \times (w/2 + e_y) = 5953 \text{ lb_ft}; \text{ (about x)}$$
 (1.0D)

Wet Dead Load per Anchor;
$$D_{a,W} = W_W / N_a = 1125 \text{ lb};$$
 (1.0D)

Seismic Loads

Design Seismic Coefficient; $C_{s,NCV} = 0.333$ Overstrength Factor; $\Omega_0 = 2.0$;

Seismic Vertical Load; $F_{pv} = W_W \times 0.2 \times S_{DS} = 599 \text{ lb; (parallel to z)}$ (1.0E)

Seismic Horizontal Load; $F_{ph} = W_W \times C_{s,NCV} = 1499 \text{ lb};$ (1.0E)

Seismic Overturning Moment; $M_{Ex} = F_{ph} \times CG_z + F_{pv} \times (w/2 + e_y) = 19377 \text{ lb_ft; (about x)}$ (1.0E)

Seismic Horizontal Load w/ Ω_0 ; $V_{E\Omega} = \Omega_0 \times F_{ph} = 2997$ lb; $(\Omega_0 E_h)$

Overturning Moment w/ Ω_0 ; $M_{Ex\Omega} = \Omega_0 \times F_{ph} \times CG_z + F_{pv} \times (w/2 + e_v)$

 $M_{Ex\Omega} = 37963 \text{ lb_ft; (about x)}$ $(\Omega_o E_h + 1.0 E_v)$

Seismic Shear per Anchor; $V_{Ea,\Omega} = \Omega_0 \times F_{ph} / N_a = 749 \text{ lb};$ $(\Omega_o E_h)$

Seismic Tension per Anchor; $T_{Ea,\Omega} = M_{Ex\Omega} / [w \times N_a / 2] = 7174 \text{ lb}$; $(\Omega_o E_h + 1.0 E_v)$

Wind Load

Wind Vertical Load; $F_{Wv} = P_{wv,NCV} \times L \times W = 405 \text{ lb; (parallel to z)}$ (1.0W)

Wind Horizontal Load; $F_{Wh} = P_{Wh,NCV} \times L \times H = 2016 \text{ lb}; \text{ (parallel to y)}$ (1.0W)

Wind Overturning Moment; $M_{Wx} = F_{Wh} \times CA_z + F_{Wv} \times w / 2 = 19289 \text{ lb_ft; (about x)}$ (1.0W)

Wind Horizontal per Anchor; $V_{Wa} = F_{Wh} / N_a = 504 \text{ lb};$ (1.0W)

Wind Tension per Anchor; $T_{Wa} = M_{Wx} / [w \times N_a / 2] = 3645 \text{ lb};$ (1.0W)

project	2501-0033	date	9/3/2025			
designer	CTN	sheet	35	of	82	

Factored Loads

Seismic

Required Base Shear w/ Ω_o ; $V_{u,E\Omega} = V_{E\Omega} = 2997$ lb; $(\Omega_o E_h)$

Required Base Moment w/ Ω_o ; $M_{u,Ex\Omega}$ = $M_{Ex\Omega}$ - $0.9 \times M_{Dx,W}$

 $M_{u,Ex\Omega} = 32605 \text{ lb_ft; (about x)}$ (0.9D + $\Omega_o E_h + 1.0 E_v$)

 $M_{u,Ex\Omega} > 0$, therefore consider overturning & anchor tension.

Req' Shear per Anchor; $V_{u,Ea,\Omega} = V_{Ea,\Omega} = 749 \text{ lb};$ $(\Omega_o E_h)$

Req' Tension per Anchor; $T_{u,Ea,\Omega} = T_{Ea,\Omega} - 0.9 \times D_{a,W} = 6162 \text{ lb};$ $(0.9D + \Omega_o E_h + 1.0E_v)$

 $T_{u,Ea,\Omega} > 0$, therefore consider anchor tension.

Wind

Required Base Shear; $V_{u,w} = F_{wh} = 2016 \text{ lb; (parallel to y)}$ (1.0W)

Required Base Moment; $M_{u,Wx} = M_{Wx} - 0.9 \times M_{Dx,D} = 17503 \text{ lb_ft; (about x)}$ (0.9D+ 1.0W)

 $M_{u,Wx} > 0$, therefore consider overturning & anchor tension.

Req' Shear per Anchor; $V_{u,Wa} = V_{Wa} = 504 \text{ lb};$ (1.0W)

Req' Tension per Anchor; $T_{u,Wa} = T_{Wa} - 0.9 \times D_{a,D} = 3308 \text{ lb};$ (0.9D + 1.0W)

 $T_{u,Wa} > 0$, therefore consider anchor tension.

project	2501-0033	date	9/3/2025		
designer	CTN	sheet	36	of	82

Anchor Design

Required Shear per Anchor; $V_{uy} = max(V_{u,Ea,\Omega}, V_{u,Wa}) = 749$ lb; (parallel to y);

Required Shear per Anchor; $V_{ux} = if(I/w < 2, 0.3 \times V_{uy}, 0 \text{ lb}) = 225 \text{ lb}; (parallel to x);$ Required Tension per Anchor; $T_u = max(0 \text{ lb}, T_{u.Ea}, \Omega, T_{u.wa}) = 6162 \text{ lb}; (parallel to z);$

(;4;) ;0.875;-inch diameter ASTM F593 Stainless Steel Group 1 or 2 threaded

rods per skid. Anchor locations per drawings.

Anchor Embedment: 7-inches

Epoxy: DeWalt Pure 110+ or Hilti HIT-RE 500 V3 Minimum Concrete Strength, f'c: 2500 psi

Minimum Slab/Housekeeping Pad Thickness: 24-inches

Minimum Edge Distance: 10-inches

Optional Grout Pad Maximum Thickness: 2-inch

Minimum Grout Strength, f'c: 5000 psi

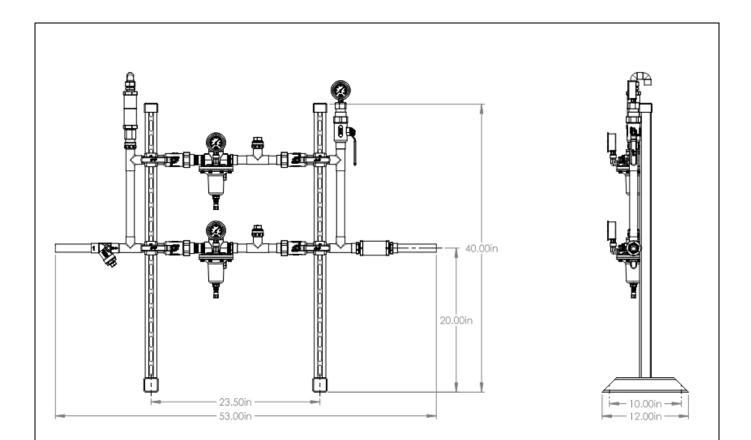
Grout shall be non-shrink conforming to ASTM C1107.

Notes:

- Concrete must be continuous under unit.
- Anchors shall not be bent after being installed.
- The use of permanent shims is not permitted.
- Nuts, washers, and other hardware used with anchors shall have a material
 or alloy designation that is compatible with the anchor rod/alloy. Contact
 between dissimilar metals shall be isolated using phenolic or otherwise
 approved isolation hardware.
- Anchors shall be galvanized or stainless steel for fastening galvanized steel to concrete/masonry.
- Anchors shall be stainless steel for fastening aluminum or stainless steel to concrete/masonry.

project 2	501-0033	date 9/3	3/2025		
designer C	TN	sheet	37	of	82

^{*}See Appendix A for DeWalt Design Assist Outputs


Pressure Control Manifold

<u>Drawings</u>

project	2501-0033	date	9/3/202	25		
designer	CTN	sheet	38	of	82	

project	2501-0033	date	9/3/2025		
designer	CTN	sheet	39	of	82

Geometry & Weight

Dry/Shipping Weight; $W_D = 500 \text{ lb}$; per Client Wet/Operating Weight; $W_W = 500 \text{ lb}$; per Client

Pipe Rack Length; L = 53 in = **4.42** ft; (parallel to x) per Dwgs - PCM Pipe Rack Width; W = 12 in = **1.00** ft; (parallel to y) per Dwgs - PCM Pipe Rack Height; H = 40 in = **3.33** ft; (parallel to z) per Dwgs - PCM

In these calculations, the x-axis is parallel to the length, the y-axis is parallel to the width and the z-axis is parallel to the height. Length, width and height are all defined above.

Vertical Center of Area; $CA_z = 1/2 \times H = 1.67$ ft

Horizontal Eccentricity x; $e_x = abs[L/2 - CG_x] = 0.00$ in; (parallel to x) Horizontal Eccentricity y; $e_y = abs[W/2 - CG_y] = 0.00$ in; (parallel to y)

 $\begin{array}{lll} \mbox{Number of Columns;} & \mbox{N}_{C} = 2; & \mbox{per Dwgs - PCM} \\ \mbox{Anchors per Column;} & \mbox{N}_{aC} = 2; & \mbox{per Dwgs - PCM} \\ \mbox{Anchor Diameter;} & \mbox{D}_{a} = 0.375; \mbox{ in} & \mbox{per Dwgs - PCM} \\ \mbox{Leg Spacing Length;} & \mbox{I} = 23.5 \mbox{ in} = \textbf{1.96} \mbox{ ft;} & \mbox{per Dwgs - PCM} \\ \mbox{Leg Spacing Width;} & \mbox{w} = 10 \mbox{ in} = \textbf{0.83} \mbox{ ft;} & \mbox{per Dwgs - PCM} \\ \end{array}$

project	2501-0033	date	9/3/202	25	
designer	CTN	sheet	40	of	82

Dead Loads

Dry Dead Load;	$W_D = 500$ lb; (parallel to z)	(1.0D)

Dry Dead Load Moment;
$$M_{Dx,D} = W_D \times (w/2 + e_v) = 208 \text{ lb_ft};$$
 (1.0D)

Dry Dead Load per Column;
$$D_{a,D} = W_D / N_C = 250 \text{ lb};$$
 (1.0D)

Wet Dead Load; $W_W = 500 \text{ lb}$; (parallel to z) (1.0D)

Wet Dead Load Moment;
$$M_{Dx,W} = W_W \times (w/2 + e_y) = 208 \text{ lb_ft};$$
 (1.0D)

Wet Dead Load per Column;
$$D_{a,W} = W_W / N_C = 250 \text{ lb};$$
 (1.0D)

Seismic Loads

Design Seismic Coefficient; $C_{s,PCM} = 0.200$; Overstrength Factor; $\Omega_0 = 2.0$;

Seismic Vertical Load; $F_{pv} = W_W \times 0.2 \times S_{DS} = 67 \text{ lb}$; (parallel to z) (1.0E)

Seismic Horizontal Load; $F_{ph} = W_W \times C_{s,PCM} = 100 \text{ lb}; \text{ (parallel to y)}$ (1.0E)

Seismic Overturning Moment; $M_{Ex} = F_{ph} \times CG_z + F_{pv} \times (w/2 + e_y) = 278 \text{ lb_ft; (about x)}$ (1.0E)

Seismic Horizontal Load w/ Ω_0 ; $V_{E\Omega} = \Omega_0 \times F_{ph} = 200$ lb; (parallel to y) $(\Omega_0 E_h)$

Overturning Moment w/ Ω_0 ; $M_{Ex\Omega} = \Omega_0 \times F_{ph} \times CG_z + F_{pv} \times (w/2 + e_v)$

 $M_{Ex\Omega}$ = 528 lb_ft; (about x) $(\Omega_o E_h + 1.0 E_v)$

Seismic Shear per Column; $V_{Ea,\Omega} = \Omega_0 \times F_{ph} / N_C = 100 \text{ lb};$ $(\Omega_o E_h)$

Seismic Tension per Anchor; $T_{Ea,\Omega} = M_{Ex\Omega} / [w \times N_C / 2] = 633 \text{ lb};$ $(\Omega_o E_h + 1.0 E_v)$

Wind Load

Wind Vertical Load; $F_{Wv} = P_{wv,PCM} \times L \times W = 88 \text{ lb; (parallel to z)}$ (1.0W)

Wind Horizontal Load; $F_{Wh} = P_{Wh,PCM} \times L \times H = 294 \text{ lb}; \text{ (parallel to y)}$ (1.0W)

Wind Overturning Moment; $M_{Wx} = F_{Wh} \times CA_z + F_{Wv} \times w / 2 = 527 \text{ lb_ft; (about x)}$ (1.0W)

Seismic Horizontal per Column; $V_{Wa} = F_{Wh} / N_C = 147 \text{ lb};$ (1.0W)

Seismic Tension per Anchor; $T_{Wa} = M_{Wx} / [w \times N_C / 2] = 633 \text{ lb};$ (1.0W)

project	2501-0033	date	9/3/202	5	
designer	CTN	sheet	41	of	82

Factored Loads

Seismic

Required Base Shear w/ Ω_o ; $V_{u,E\Omega} = V_{E\Omega} = 200 \text{ lb}$; $(\Omega_o E_h)$

Required Base Moment w/ Ω_o ; $M_{u,Ex\Omega} = M_{Ex\Omega} - 0.9 \times M_{Dx,W}$

 $M_{u,Ex\Omega} = 340 \text{ lb_ft; (about x)}$ (0.9D + $\Omega_o E_h + 1.0 E_v$)

 $M_{u,Ex\Omega} > 0$, therefore consider overturning & anchor tension.

Req' Shear per Column; $V_{u,Ea,\Omega} = V_{Ea,\Omega} = 100 \text{ lb};$ $(\Omega_o E_h)$

Req' Tension per Column; $T_{u,Ea,\Omega} = T_{Ea,\Omega} - 0.9 \times D_{a,W} = 408 \text{ lb};$ (0.9D + $\Omega_o E_h + 1.0 E_v$)

 $T_{u.Ea.\Omega} > 0$, therefore consider anchor tension.

Wind

Required Base Shear; $V_{u,w} = F_{wh} = 294 \text{ lb}; \text{ (parallel to y)}$ (1.0W)

Required Base Moment; $M_{u,Wx} = M_{Wx} - 0.9 \times M_{Dx,D} = 340 \text{ lb_ft; (about x)}$ (0.9D+ 1.0W)

 $M_{u,Wx} > 0$, therefore consider overturning & anchor tension.

Req' Shear per Column; $V_{u,Wa} = V_{Wa} = 147 \text{ lb};$ (1.0W)

Req' Tension per Column; $T_{u,Wa} = T_{Wa} - 0.9 \times D_{a,D} = 408 \text{ lb};$ (0.9D + 1.0W)

 $T_{u,Wa} > 0$, therefore consider anchor tension.

Anchor Design

Required Shear per Column; $V_{uy} = max(V_{u,Ea,\Omega}, V_{u,wa}) = 147$ lb; (parallel to y); Required Shear per Column; $V_{ux} = if(I/w < 2, 0.3 \times V_{uy}, 0 \text{ lb}) = 0$ lb; (parallel to x); Required Tension per Column; $V_{ux} = if(I/w < 2, 0.3 \times V_{uy}, 0 \text{ lb}) = 0$ lb; (parallel to z);

Anchor Side Edge Distance; $S_{a,1} = I/2 - 1$ in = 11 in; (parallel to x)

(;2;) ;0.375;-inch diameter ASTM F593 Stainless Steel Group 1 or 2 threaded rods per column, (4) anchors per pipe rack. Anchor locations per drawings.

Anchor Embedment: 4-inches

Epoxy: DeWalt Pure 110+ or Hilti HIT-RE 500 V3 Minimum Concrete Strength, f'c: 2500 psi

Minimum Slab/Housekeeping Pad Thickness: 24-inches

Minimum Edge Distance: 4-inches

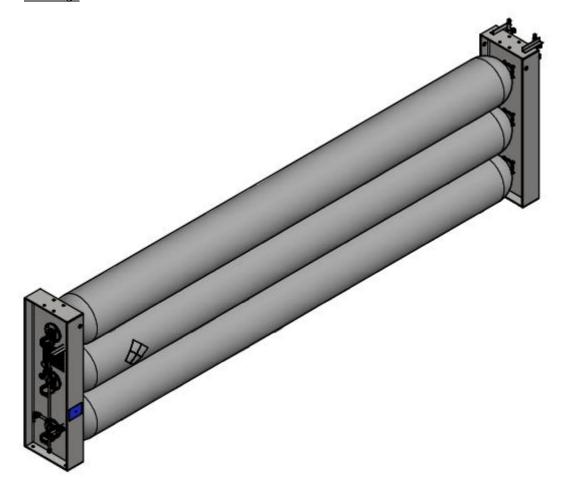
Optional Grout Pad Maximum Thickness: 2-inch

Minimum Grout Strength, f'c: 5000 psi

Grout shall be non-shrink conforming to ASTM C1107.

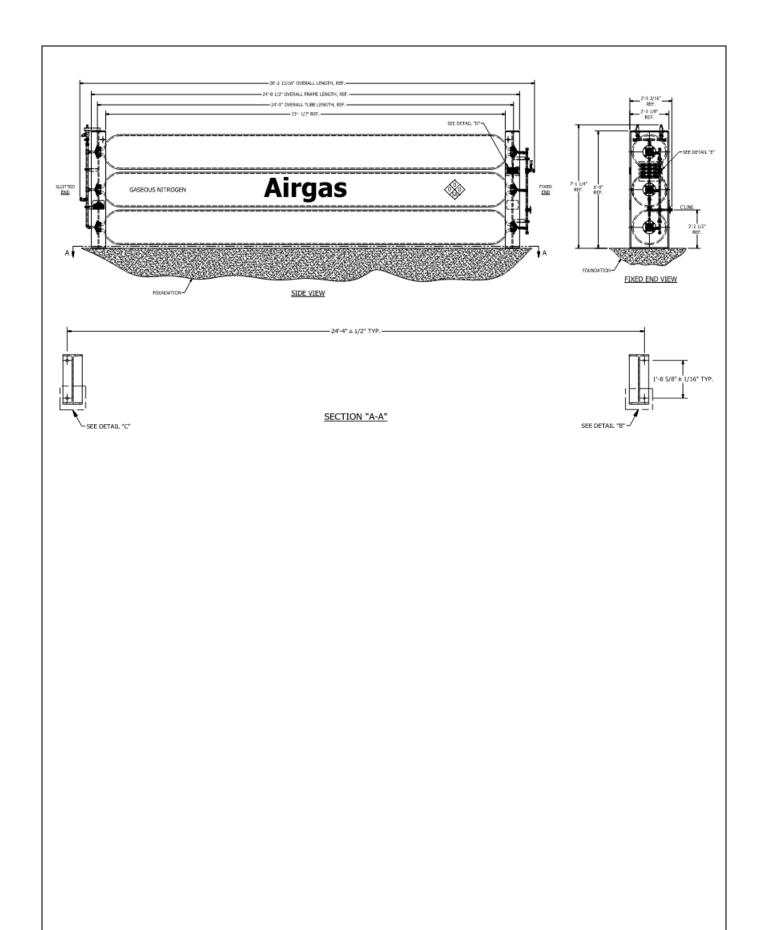
Notes:

- Concrete must be continuous under unit.
- Anchors shall not be bent after being installed.
- The use of permanent shims is not permitted.
- Nuts, washers, and other hardware used with anchors shall have a material
 or alloy designation that is compatible with the anchor rod/alloy. Contact
 between dissimilar metals shall be isolated using phenolic or otherwise
 approved isolation hardware.
- Anchors shall be galvanized or stainless steel for fastening galvanized steel to concrete/masonry.
- Anchors shall be stainless steel for fastening aluminum or stainless steel to concrete/masonry.



project 25		date 9/3	/2023		
designer CT	-N s	sheet 4	13	of	82

^{*}See Appendix A for DeWalt Design Assist Outputs


ASME Tube

Drawings

project	2501-0033	date	9/3/2025	5	
designer	CTN	sheet	44	of	82

project 2501-0				
designer CTN	sheet	45	of	82

Geometry & Weight

Dry/Shipping Weight; $W_D = 18619 \text{ lb}$; per Dwgs - ASME Wet/Operating Weight; $W_W = 21009 \text{ lb}$; per Dwgs - ASME

Skid Length; L = 314.69 in = 26.22 ft; (parallel to x) per Dwgs - ASME Skid Width; W = 29.19 in = 2.43 ft; (parallel to y) per Dwgs - ASME Skid Height; H = 85.25 in = 7.10 ft; (parallel to z) per Dwgs - ASME

In these calculations, the x-axis is parallel to the length, the y-axis is parallel to the width and the z-axis is parallel to the height. Length, width and height are all defined above.

Vertical Center of Gravity; $CG_z = 2/3 \times H = 4.74 \text{ ft; (parallel to z)}$ assumed Horizontal Center of Gravity; $CG_x = 0.5 \times L = 13.11 \text{ ft; (parallel to x)}$ assumed Horizontal Center of Gravity; $CG_y = 0.5 \times W = 1.22 \text{ ft; (parallel to y)}$ assumed

Vertical Center of Area; $CA_z = 1/2 \times H = 3.55 \text{ ft}$

Horizontal Eccentricity x; $e_x = abs[L/2 - CG_x] = 0.00$ in; (parallel to x) Horizontal Eccentricity y; $e_y = abs[W/2 - CG_y] = 0.00$ in; (parallel to y)

 $\begin{array}{lll} \mbox{Number of Anchors;} & \mbox{N}_a = 4; & \mbox{per Dwgs - ASME} \\ \mbox{Anchor Diameter;} & \mbox{D}_a = 0.875; \mbox{in} & \mbox{per Dwgs - ASME} \\ \mbox{Anchor Spacing Length;} & \mbox{I} = 292 \mbox{ in} = \textbf{24.33} \mbox{ ft;} & \mbox{per Dwgs - ASME} \\ \mbox{Anchor Spacing Width;} & \mbox{w} = 20.625 \mbox{ in} = \textbf{1.72} \mbox{ ft;} & \mbox{per Dwgs - ASME} \\ \end{array}$

project	2501-0033	date	9/3/202	25	
designer	CTN	sheet	46	of	82

<u>Dead Loads</u>

Dry Dead Load;	$W_D = 18619$ lb; (parallel to z)	(1.0D)
----------------	-----------------------------------	--------

Dry Dead Load Moment;
$$M_{Dx,D} = W_D \times (w/2 + e_v) = 16001 \text{ lb_ft; (about x)}$$
 (1.0D)

Dry Dead Load per Anchor;
$$D_{a,D} = W_D / N_a = 4655 \text{ lb};$$
 (1.0D)

Wet Dead Load; $W_W = 21009 \text{ lb}; \text{ (parallel to z)}$ (1.0D)

Wet Dead Load Moment;
$$M_{Dx,W} = W_W \times (w/2 + e_y) = 18055 \text{ lb_ft}; \text{ (about x)}$$
 (1.0D)

Wet Dead Load per Anchor;
$$D_{a,W} = W_W / N_a = 5252 \text{ lb};$$
 (1.0D)

Seismic Loads

 $\begin{array}{ll} \mbox{Design Seismic Coefficient;} & \mbox{$C_{s,ASME}$ = 0.200} \\ \mbox{Overstrength Factor;} & \mbox{Ω_0 = 2.0;} \\ \end{array}$

Seismic Vertical Load;
$$F_{pv} = W_W \times 0.2 \times S_{DS} = 2794 \text{ lb; (parallel to z)}$$
 (1.0E)

Seismic Horizontal Load;
$$F_{ph} = W_W \times C_{s,ASME} = 4202 \text{ lb};$$
 (1.0E)

Seismic Overturning Moment;
$$M_{Ex} = F_{ph} \times CG_z + F_{pv} \times (w/2 + e_v) = 22301 \text{ lb ft; (about x)}$$
 (1.0E)

Seismic Horizontal Load w/
$$\Omega_0$$
; $V_{E\Omega} = \Omega_0 \times F_{ph} = 8404 \text{ lb}$; $(\Omega_0 E_h)$

Overturning Moment w/ Ω_0 ; $M_{Ex\Omega} = \Omega_0 \times F_{ph} \times CG_z + F_{pv} \times (w/2 + e_v)$

$$M_{Ex\Omega} = 42202 \text{ lb_ft; (about x)}$$
 ($\Omega_o E_h + 1.0 E_v$)

(1.0W)

Wind Load

Wind Vertical Load; $F_{Wv} = P_{wv,ASME} \times L \times W = 1275 \text{ lb; (parallel to z)}$ (1.0W)

Wind Horizontal Load; $F_{Wh} = P_{wh,ASME} \times L \times H = 3724 \text{ lb; (parallel to y)}$

Wind Overturning Moment; $M_{Wx} = F_{Wh} \times CA_z + F_{Wv} \times w / 2 = 14324 \text{ lb ft; (about x)}$ (1.0W)

Factored Loads

Seismic

Required Base Shear w/ Ω_o ; $V_{u,E\Omega} = V_{E\Omega} = 8404 \text{ lb}$; $(\Omega_o E_h)$

Required Base Moment w/ Ω_o ; $M_{u,Ex\Omega} = M_{Ex\Omega} - 0.9 \times M_{Dx,W}$

 $M_{u,Ex\Omega} = 25952 \text{ lb_ft}; \text{ (about x)}$ (0.9D + $\Omega_o E_h + 1.0 E_v$)

 $M_{u,Ex\Omega} > 0$, therefore consider overturning & anchor tension.

Wind

Required Base Shear; $V_{u,w} = F_{wh} = 3724 \text{ lb; (parallel to y)}$ (1.0W)

Required Base Moment; $M_{u,Wx} = M_{Wx} - 0.9 \times M_{Dx,D} = -76 \text{ lb_ft; (about x)}$ (0.9D+ 1.0W)

 $M_{u,Wx}$ < 0, therefore no skid overturning or anchor tension.

Anchor Design

Horizontal Eccentricity x; $e_x = 0.00$ in; (parallel to x) Horizontal Eccentricity y; $e_y = 0.00$ in; (parallel to y)

Required Base Shear; $V_{uy} = max(V_{u,E\Omega}, V_{u,W}) = 8404 \text{ lb; (parallel to y);}$ Required Base Shear; $V_{ux} = if(I/w < 2, 0.3 \times V_{uy}, 0 \text{ lb}) = 0 \text{ lb; (parallel to x);}$

Required Base Moment; $M_{ux} = max(0 lb_in, M_{u,Ex\Omega}, M_{u,Wx})$

 $M_{ux} = 311430 \text{ lb_in; (about x);}$

Required Base Moment; $M_{uy} = if(I/w < 2, 0.3 \times M_{ux}, 0 lb_in)$

 $M_{uy} = 0$ lb_in; (about y);

(;4;) ;0.875;-inch diameter ASTM F593 Stainless Steel Group 1 or 2 threaded

rods per skid. Anchor locations per drawings.

Anchor Embedment: 7-inches

Epoxy: DeWalt Pure 110+ or Hilti HIT-RE 500 V3 Minimum Concrete Strength, f'c: 2500 psi

Minimum Slab/Housekeeping Pad Thickness: 24-inches

Minimum Edge Distance: 12-inches

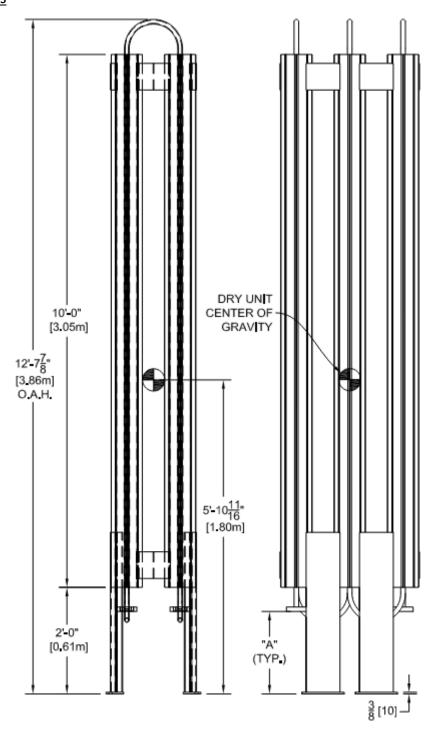
Optional Grout Pad Maximum Thickness: 2-inch

Minimum Grout Strength, f'c: 5000 psi

Grout shall be non-shrink conforming to ASTM C1107.

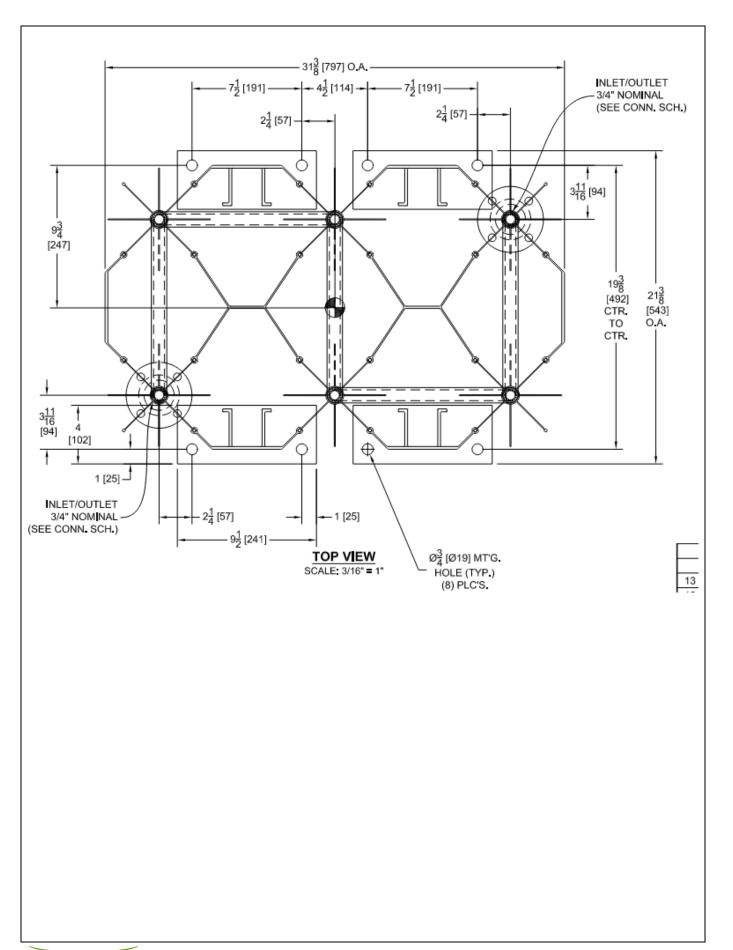
Notes:

- Concrete must be continuous under unit.
- Anchors shall not be bent after being installed.
- The use of permanent shims is not permitted.
- Nuts, washers, and other hardware used with anchors shall have a material
 or alloy designation that is compatible with the anchor rod/alloy. Contact
 between dissimilar metals shall be isolated using phenolic or otherwise
 approved isolation hardware.
- Anchors shall be galvanized or stainless steel for fastening galvanized steel to concrete/masonry.
- Anchors shall be stainless steel for fastening aluminum or stainless steel to concrete/masonry.



project	2501-0033	date	9/3/2025		
designer	CTN	sheet	48	of	82

^{*}See Appendix A for DeWalt Design Assist Outputs


Thermax Vaporizer

<u>Drawings</u>

project	2501-0033	date	9/3/2025		
designer	CTN	sheet	49	of	82

project	2501-0033	date	9/3/2025	5		
designer	CTN	sheet	50	of	82	

Geometry & Weight

Dry/Shipping Weight; $W_D = 205 \text{ lb}$; per Dwgs – T Vaporizer Wet/Operating Weight; $W_W = 205 \text{ lb}$; per Dwgs – T Vaporizer

Skid Length; L = 31.375 in = 2.61 ft; (parallel to x) per Dwgs – T Vaporizer Skid Width; W = 21.375 in = 1.78 ft; (parallel to y) per Dwgs – T Vaporizer Skid Height; H = 151.875 in = 12.66 ft; (parallel to z) per Dwgs – T Vaporizer

In these calculations, the x-axis is parallel to the length, the y-axis is parallel to the width and the z-axis is parallel to the height. Length, width and height are all defined above.

 $\begin{array}{ll} \mbox{Vertical Center of Gravity;} & \mbox{CG}_z = 70.6875 \ \mbox{in} = \textbf{5.89} \ \mbox{ft; (parallel to z)} & \mbox{per Dwgs} - \mbox{T Vaporizer} \\ \mbox{Horizontal Center of Gravity;} & \mbox{CG}_x = 0.5 \times \mbox{L} = \textbf{1.31} \ \mbox{ft; (parallel to x)} & \mbox{assumed} \\ \mbox{Horizontal Center of Gravity;} & \mbox{CG}_y = 0.5 \times \mbox{W} = \textbf{0.89} \ \mbox{ft; (parallel to y)} & \mbox{assumed} \\ \mbox{} \end{array}$

Vertical Center of Area; $CA_z = 1/2 \times H = 6.33 \text{ ft}$

Horizontal Eccentricity x; $e_x = abs[L/2 - CG_x] = 0.00$ in; (parallel to x) Horizontal Eccentricity y; $e_y = abs[W/2 - CG_y] = 0.00$ in; (parallel to y)

 $\begin{array}{lll} \mbox{Number of Anchors;} & \mbox{N}_a = 8; & \mbox{per Dwgs} - T \mbox{Vaporizer} \\ \mbox{Anchor Diameter;} & \mbox{D}_a = 0.625; \mbox{in} & \mbox{per Dwgs} - T \mbox{Vaporizer} \\ \mbox{Anchor Spacing Length;} & \mbox{I} = 19.5 \mbox{ in} = 1.62 \mbox{ ft;} & \mbox{per Dwgs} - T \mbox{Vaporizer} \\ \mbox{Anchor Spacing Width;} & \mbox{w} = 19.375 \mbox{ in} = 1.61 \mbox{ ft;} & \mbox{per Dwgs} - T \mbox{Vaporizer} \\ \mbox{Vaporizer} \\ \mbox{Vaporizer} & \mbox{Vaporizer} \\ \$

project	2501-0033	date	9/3/202	25		
designer	CTN	sheet	51	of	82	

<u>Dead Loads</u>

Dry Dead Load;	$W_D = 205$ lb; (parallel to z)	(1.0D)
----------------	---------------------------------	--------

Dry Dead Load Moment;
$$M_{Dx,D} = W_D \times (w/2 + e_v) = 165 \text{ lb}_ft; \text{ (about x)}$$
 (1.0D)

Dry Dead Load per Anchor;
$$D_{a,D} = W_D / N_a = 26 \text{ lb};$$
 (1.0D)

Wet Dead Load; $W_W = 205 \text{ lb}$; (parallel to z) (1.0D)

Wet Dead Load Moment;
$$M_{Dx,W} = W_W \times (w/2 + e_y) = 165 \text{ lb_ft}; \text{ (about x)}$$
 (1.0D)

Wet Dead Load per Anchor;
$$D_{a,W} = W_W / N_a = 26 \text{ lb};$$
 (1.0D)

Seismic Loads

Design Seismic Coefficient; $C_{s,TV} = 0.333$; Overstrength Factor; $\Omega_0 = 2.0$;

Seismic Vertical Load;
$$F_{pv} = W_W \times 0.2 \times S_{DS} = 27 \text{ lb}; \text{ (parallel to z)}$$
 (1.0E)

Seismic Horizontal Load;
$$F_{ph} = W_W \times C_{s,TV} = 68 \text{ lb};$$
 (1.0E)

Seismic Overturning Moment;
$$M_{Ex} = F_{ph} \times CG_z + F_{pv} \times (w/2 + e_v) = 424 \text{ lb ft; (about x)}$$
 (1.0E)

Seismic Horizontal Load w/
$$\Omega_0$$
; $V_{E\Omega} = \Omega_0 \times F_{ph} = 137 \text{ lb}$; $(\Omega_0 E_h)$

Overturning Moment w/ Ω_0 ; $M_{Ex\Omega} = \Omega_0 \times F_{ph} \times CG_z + F_{pv} \times (w/2 + e_v)$

$$M_{Ex\Omega}$$
 = 826 lb_ft; (about x) $(\Omega_o E_h + 1.0 E_v)$

Wind Load

Wind Vertical Load; $F_{Wv} = P_{wv,TV} \times L \times W = 111 \text{ lb; (parallel to z)}$ (1.0W)

Wind Horizontal Load; $F_{Wh} = P_{Wh,TV} \times L \times H = 789 \text{ lb; (parallel to y)}$ (1.0W)

Wind Overturning Moment; $M_{Wx} = F_{Wh} \times CA_z + F_{Wv} \times w / 2 = 5084 \text{ lb_ft; (about x)}$ (1.0W)

<u>Factored Loads</u>

Seismic

Required Base Shear w/ Ω_0 ; $V_{u,E\Omega} = V_{E\Omega} = 137 \text{ lb}$; $(\Omega_0 E_h)$

Required Base Moment w/ Ω_0 ; $M_{u,Ex\Omega} = M_{Ex\Omega} - 0.9 \times M_{Dx,W}$

 $M_{u,Ex\Omega} = 677 \text{ lb_ft; (about x)}$ (0.9D + $\Omega_o E_h + 1.0 E_v$)

 $M_{u,Ex\Omega} > 0$, therefore consider overturning & anchor tension.

Wind

Required Base Shear; $V_{u,w} = F_{wh} = 789 \text{ lb}; \text{ (parallel to y)}$ (1.0W)

Required Base Moment; $M_{u,Wx} = M_{Wx} - 0.9 \times M_{Dx,D} = 4935 \text{ lb_ft}$; (about x) (0.9D+ 1.0W)

 $M_{u,Wx} > 0$, therefore consider overturning & anchor tension.

project	2501-0033	date	9/3/2025	<u>, </u>	
designer	CTN	sheet	52	of	82

Anchor Design

Horizontal Eccentricity x; $e_x = 0.00$ in; (parallel to x) Horizontal Eccentricity y; $e_y = 0.00$ in; (parallel to y)

Required Base Shear; $V_{uy} = max(V_{u,E\Omega}, V_{u,W}) = 789 \text{ lb; (parallel to y);}$

Required Base Shear; $V_{ux} = if(I/w < 2, 0.3 \times V_{uy}, 0 \text{ lb}) = 237 \text{ lb}; (parallel to x);$

Required Base Moment; $M_{ux} = max(0 lb_in, M_{u,Ex\Omega}, M_{u,Wx})$

 $M_{ux} = 59220 \text{ lb in; (about x);}$

Required Base Moment; $M_{uy} = if(I/w < 2, 0.3 \times M_{ux}, 0 lb_in)$

 $M_{uy} = 17766 \text{ lb_in; (about y);}$

(;8;) ;0.625;-inch diameter ASTM F593 Stainless Steel Group 1 or 2 threaded

rods per skid. Anchor locations per drawings.

Anchor Embedment: 5-inches

Epoxy: DeWalt Pure 110+ or Hilti HIT-RE V3 Minimum Concrete Strength, f'c: 2500 psi

Minimum Slab/Housekeeping Pad Thickness: 24-inches

Minimum Edge Distance: 5-inches

Optional Grout Pad Maximum Thickness: 2-inch

Minimum Grout Strength, f'c: 5000 psi

Grout shall be non-shrink conforming to ASTM C1107.

Notes:

- Concrete must be continuous under unit.
- Anchors shall not be bent after being installed.
- The use of permanent shims is not permitted.
- Nuts, washers, and other hardware used with anchors shall have a material
 or alloy designation that is compatible with the anchor rod/alloy. Contact
 between dissimilar metals shall be isolated using phenolic or otherwise
 approved isolation hardware.
- Anchors shall be galvanized or stainless steel for fastening galvanized steel to concrete/masonry.
- Anchors shall be stainless steel for fastening aluminum or stainless steel to concrete/masonry.

project	2501-0033	date	9/3/2025	5		
designer	CTN	sheet	53	of	82	

^{*}See Appendix A for DeWalt Design Assist Outputs

Mat Slab Design

Note: Per the geotechnical report, differential settlement of up to 2" is possible.

Slab Length; $L_{slab} = 30 \text{ ft};$ Slab Width; $B_{slab} = 16 \text{ ft};$ Slab Depth; $d_{slab} = 24 \text{ in} = 2 \text{ ft};$

Loading

Note: All equipment weights and overturning moments will be added together and applied to the center of the mat slab for the purpose of design. An eccentricity of 5% of the slab width will be applied to the location of loading per ASCE 7-16 Section 12.9.2.2.2.

Sum of Equipment Weights; $W_{tot} = 33800lb + 2435.749lb + 4500lb + 500lb + 21009lb + 205lb$;

 $W_{tot} = 62450 \text{ lb};$ per dwgs

Sum of Total Wind Shear; $V_{W,tot} = 1220lb + 803lb + 2016lb + 294lb + 3724lb + 789lb$;

 $V_{W,tot}$ = **8846** lb;

Sum of Total Seismic Shear; $V_{E,tot} = 11255lb + 487lb + 1499lb + 100lb + 4202lb + 68lb$;

 $V_{E,tot} = 17611 lb;$

Sum of Wind Overturning Moments;

 $M_{W,tot}$ = 11591 lb_ft + 4503 lb_ft + 19289 lb_ft + 527 lb_ft + 14324 lb_ft + 5084 lb_ft; $M_{W,tot}$ = **55318** lb_ft;

Sum of Seismic Overturning Moments;

 $M_{E,tot} = 136242 \text{ lb_ft} + 3223 \text{ lb_ft} + 19377 \text{ lb_ft} + 278 \text{ lb_ft} + 22301 \text{ lb_ft} + 424 \text{ lb_ft};$ $M_{E,tot} = 181845 \text{ lb} \text{ ft};$

Additional Overturning Moment from Settlement

Weighted Average C.O.G.; $CG_{z,avg} = ((33800lb \times 10.92ft) + (2435.749lb \times 4.47ft) + (4500lb \times 12.4ft) + (500lb \times 2.5ft) + (21009lb \times 4.74ft) + (205lb \times 5.89ft)) / W_{tot} =$ **8.61**ft;

Assumed Weighted Avg, C.O.G.; $CG_{z,avg} = 10$ ft; (conservative) Assumed Eccentricity; e = 6 in; (conservative)

Add. Overturning Moment; $M_{D,add} = W_{tot} \times e = 31225 \text{ lb_ft};$

Design

See Appendix B for Enercalc Ouput

Use a 30'x16'x2' mat slab with #6 @ 10" o.c. reinforcing each way, T&B

project	2501-0033	date	9/3/2025		
designer	CTN	sheet	54	of	82

Appendix A - Dewalt Design Assist

Nitrogen Tank

DEWALT DESIGN ASSIST 1.7.6.0

Page 1

Nitrogen Tank Anchorage - AWS Headed Stud 2501-

8/28/2025

1.Project Information

DEWALT

Company: Peterson Structural Engineers

CTN Project Engineer:

Address:

Phone: M: P:

Email: cabe.nieth@psengineers.com

2501-0033 Project Name: Project Address: Scappoose, Oregon

Notes:

2. Selected Anchor Information

Selected Anchor: AWS Headed Stud

Brand: Generic

Material: 1" Ø Headed Stud ASTM A 108 Type A

Embedment: h_{ef} 20.50 in h_{nom} 21

Approval:

Issued/Revision:

3.Design Principles

ACI 318-19 Design Method:

Section 5.3 **Load Combinations:** User Defined Loads

Tension 17.10.5.3(d) Shear 17.10.6.3(c) $\Omega_0 = 2$ Seismic Loading:

1.Base Material Information

Concrete:

Cracked Normal Weight Concrete Type:

2500 psi Strength

Reinforcement:

None or < #4 Rebar Edge Reinforcement

No (Condition B) Shear No (Condition B) Spacing Tension

Controls Breakout Tension False Shear False

Base Plate: Thickness 0.5 Length 21.3 Width 28 Sizing

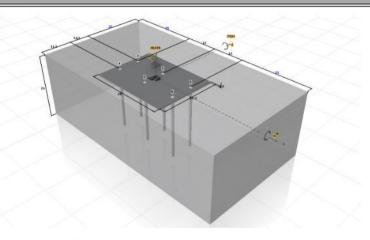
Standoff None Height 0

Strength 36000 psi

HSS Rectangular 2 X 2 X 0.125 Profile:

Torqued Anchor Bolt:

Base Cover: 3 End Cover: 2 **Concrete Covers:**



Page 2

Nitrogen Tank Anchorage - AWS Headed Stud 2501-0033

8/28/2025

5.Geometric Conditions

h _{slab}	24	in	h_{min}	24.000	in
Edge Cx-	35	in	c_{\min}	2.813	in
Edge Cx+	35	in	cac	30.750	in
Edge Cy-	11.5	in	s_{min}	4.000	in
Edge Cy+	32	in	200,000		

6.Summary Results

Tension Loading

Tension Loading					
Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength:	8707.31	35932.00	0.242	OK	
Concrete Breakout Strength:	46439.00	57202.00	0.812	OK	Controls
Pullout Strength:	8707.00	13545.00	0.643	OK	

Shear Loading

Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength	1387.00	31141.00	0.045	OK	
Concrete Breakout Strength:	7505.00	17347.00	0.433	OK	Controls
Pryout Strength	7509.00	153173.00	0.049	OK	

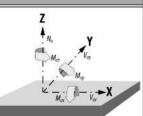
project 25	601-0033 c	date 9/3	/2023		
designer CT	·N s	sheet !	56	of	82

Page 3

Nitrogen Tank Anchorage - AWS Headed Stud 2501-0033

8/28/2025

7. Warnings and Remarks


ANCHOR DESIGN CRITERIA IS SATISFIED

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads /	Action	S					
Nu	46439. 0	lb	Vux	0.0	lb	Vuy	7504.0	lb
Muz	0.0	in-lb	Mux	0.0	in-lb	Muy	0.0	in-lb
Consi	der Load I	Reversal	X	Direction	100%	ΥI	Direction	100%

DEWALT DESIGN A	ASSIST	1.7.6.0
-----------------	--------	---------

Page 4

Nitrogen Tank Anchorage - AWS Headed Stud 2501- $0033\,$

8/28/2025

									100000000000000000000000000000000000000
Load I	Distribution								
Max. co	ncrete compressive s	strain: 0.000	%	Anc	chor Ecce	entricity			
Max. co	ncrete compressive s	stress: 0.000	psi	ex	0	in	ey	0	in
Resultin	g tension force:	46439.00	00 lb	Prof	file Ecce	ntricity			
Resultin	g compression force	0.000	lb	ex	1	in	ey	0	in
Resultin	g anchor forces / Lo	ad distribution							
Anchor	Tension Load (lb)	Shear Load (Il	b) Comp Shear X		Shear Lo Shea	oad (lb) ır Y	Anch X	ior Co	oordinates (in) Y
1	7739.83	1251.4	-43.2		125	0.7	0.00	ю	3.815
2	7739.83	1251.4	43.2		125	0.7	0.00	00	-3.815
3	6772.35	1115.7	-43.2		111	4.9	-12.	000	3.815
4	6772.35	1115.7	43.2		111	4.9	-12.	000	-3.815
5	8707.31	1387.1	-43.2		138	6.4	12.0	000	3.815
6	8707.31	1387.1	43.2		138	6.4	12.0	000	-3.815

project	2501-0033	date	9/3/202	5		
designer	CTN	sheet	58	of	82	

P2K Pump Skid

DEWALT

DEWALT DESIGN ASSIST 1.7.6.0

Page 1

P2K Pump Skid Anchorage 2501-0033

8/12/2025

9/3/2025

59

of

82

1.Project Information

Company: Peterson Structural Engineers

Project Engineer: CTN

Address:

Phone: M: P:

Email: cabe.nieth@psengineers.com

Project Name: 2501-0033

Project Address: Scappoose, Oregon

Notes:

2. Selected Anchor Information

Selected Anchor: HIT-RE 500 V3

Brand: Hilti®

Material: 3/8" Ø Threaded Rod ASTM F593 Group 1 -

CW1

Embedment: h_{ef} 3.00 in h_{nom} 3 in

Approval: ICC-ES ESR-3814
Issued/Revision: Jan,2025 Drill method: Hammer Drilled

3.Design Principles

Design Method: ACI 318-19

Load Combinations: Section 5.3 User Defined Loads

Seismic Loading: Tension 17.10.5.3(d) Shear 17.10.6.3(e) $\Omega_0 = 2$

1.Base Material Information

Concrete:

Type: Cracked Normal Weight Concrete

Strength 2500 psi

Reinforcement:

Edge Reinforcement None or < #4 Rebar

Spacing Tension No (Condition B) Shear No (Condition B)

Controls Breakout Tension False Shear False

Base Plate:

Hole Condition:

Sizing Thickness 0.5 in Length 4 in Width 4 in

Standoff Grout Pad Height 2 in

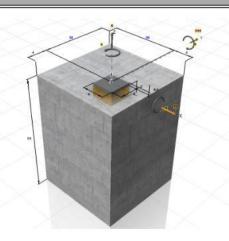
Strength 36000 psi

Profile: None

Max. Service Temperature: Long Term: 110 °F Short Term: 130 °F

Dry Hole

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility



Page 2

P2K Pump Skid Anchorage 2501-0033

8/12/2025

5.Geometric Conditions

h _{slab}	24	in	h_{min}	4.250	in
Edge Cx-	30	in	c_{\min}	1.875	in
Edge Cx+	4	in	cac	5.038	in
Edge Cy-	4	in	s_{min}	1.875	in
Edge Cy+	30	in			

6.Summary Results

Tension Loading

Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical

Shear Loading

Direct Louding					
Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength	255.00	1786.00	0.143	OK	
Concrete Breakout Strength:	255.00	1364.00	0.187	OK	Controls
Pryout Strength	255.00	3978.00	0.064	OK	

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

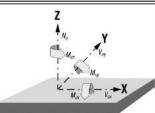
project 250	,_ 0000	9/3/2025		
designer CTI	N sheet	60	of	82

Page 3

P2K Pump Skid Anchorage 2501-0033

8/12/2025

7. Warnings and Remarks


ANCHOR DESIGN CRITERIA IS SATISFIED

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG"). The Hilti® products shown in this software are displayed solely for comparative advertising purposes. Hilti AG has not reviewed, approved, or endorsed the use of the Hilti® products or trademarks in this software and is in no way affiliated with Licensor. The DDA Software uses only publicly available Hilti® product data in calculations associated with those Hilti® products.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Design Loads / Actions								
Nu	0.0	lb	Vux	73.0	lb	Vuy	244.0	lb
Muz	0.0	in-lb	Mux	0.0	in-lb	Muy	0.0	in-lb
Consi	der Load	Reversal	X	Direction	100%	ΥI	Direction	100%

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

project 2501-0	uss date	9/3/20	25	
designer CTN	sheet	61	of	82

Page 4

P2K Pump Skid Anchorage 2501-0033

8/12/2025

	Distribution			to v			A7000000000000000000000000000000000000			
Max. co	ncrete compressive s	train:	0.000	%	Anc	hor Ecce	entricity			
Max. co	ncrete compressive s	tress:	0.000	psi	ex	0	in	ey	0	in
Resultin	g tension force:		0.000	1b	Prof	file Ecce	ntricity			
Resultin	g compression force		0.000	lb	ex	0	in	ey	0	in
Resultin	g anchor forces / Loa	ad distr	ibution							
Anchor	Tension Load (lb)	Shear	Load (lb)		nent	Shear Lo		Anch	or Co	ordinates (in)
	57 (2)		0,000	Shear X		Shea	ır Y	X		Y
1	0.00	254.7		73.0		244	.0	0.00	0	0.000

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG")

project	2501-0033	date	9/3/202	25	
designer	CTN	sheet	62	of	82

Nikkiso Cryoquip Vaporizer

DEWALT

DEWALT DESIGN ASSIST 1.7.6.0

Page 1

Nikkiso Cryoquip Vaporizer Anchorage 2501-0033

8/12/2025

1.Project Information

Peterson Structural Engineers Company:

Project Engineer: CTN

Address:

Phone: M: P:

Email: cabe.nieth@psengineers.com

Project Name: 2501-0033

Project Address: Scappoose, Oregon

Notes:

2. Selected Anchor Information

Selected Anchor: HIT-RE 500 V3

Hilti® Brand:

Material: 7/8" Ø Threaded Rod ASTM F593 Group 1 -

CW2

Embedment: $h_{\rm ef}$ 7.00 in h_{nom} 7

ICC-ES ESR-3814 Approval: Issued/Revision: Jan,2025 **Drill method:** Hammer Drilled

3.Design Principles

Design Method: ACI 318-19

Load Combinations: Section 5.3 User Defined Loads

Seismic Loading: Tension 17.10.5.3(d) Shear 17.10.6.3(c) $\Omega_0 = 2$

4.Base Material Information

Concrete:

Normal Weight Concrete Cracked Type:

2500 psi Strength

Reinforcement:

None or < #4 Rebar Edge Reinforcement

Shear No (Condition B) Spacing Tension No (Condition B)

Controls Breakout False Tension False

Base Plate:

Thickness 0.5 10 Width 8 Length in in Sizing

Grout Pad Height 2 in Standoff

Strength 36000 psi

Profile: HSS Rectangular 3 X 3 X 0.125

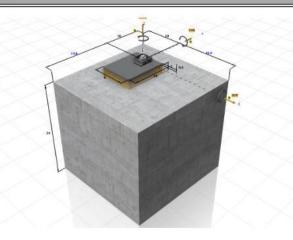
Hole Condition: Dry Hole

°F Max. Service Temperature: Long Term: 110 Short Term: 130

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG")

82



Page 2

Nikkiso Cryoquip Vaporizer Anchorage 2501-0033

8/12/2025

5.Geometric Conditions

h _{slab}	24	in	h_{min}	9.000	in
Edge Cx-	10	in	c_{\min}	4.375	in
Edge Cx+	16.6	in	cac	9.923	in
Edge Cy-	15.8	in	s_{min}	4.375	in
Edge Cy+	10	in			

6.Summary Results

Tension Loading

Demand(lb)	Capacity(lb)	Utilization	Status	Critical
6162.00	25509.00	0.242	OK	
6162.00	7209.00	0.855	OK	Controls
6162.00	9362.00	0.658	OK	
	6162.00 6162.00	6162.00 25509.00 6162.00 7209.00	6162.00 25509.00 0.242 6162.00 7209.00 0.855	6162.00 25509.00 0.242 OK 6162.00 7209.00 0.855 OK

Shear Loading

Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength	782.00	9042.00	0.086	OK	151
Concrete Breakout Strength:	782.00	7471.00	0.105	OK	Controls
Pryout Strength	782.00	20702.00	0.038	OK	

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

project 2	2501-0033	date 9/3	3/2025		
designer C	CTN	sheet	64	of	82

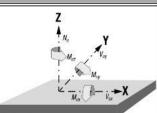
Page 3

Nikkiso Cryoquip Vaporizer Anchorage 2501-0033

8/12/2025

7. Warnings and Remarks

ANCHOR DESIGN CRITERIA IS SATISFIED



- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG"). The Hilti® products shown in this software are displayed solely for comparative advertising purposes. Hilti AG has not reviewed, approved, or endorsed the use of the Hilti® products or trademarks in this software and is in no way affiliated with Licensor. The DDA Software uses only publicly available Hilti® product data in calculations associated with those Hilti® products.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads /	Actio	ons	
Nu	6162.0	lb	Vux	225.0

Vuy lb 749.0 lb 0.0 0.0 0.0 Muz in-lb Mux in-lb Muy in-lb Consider Load Reversal X Direction 100% Y Direction 100%

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

Page 4

Nikkiso Cryoquip Vaporizer Anchorage 2501-0033

8/12/2025

Load I	Distribution									
Max. co	ncrete compressive s	train:	0.000	%	Anc	hor Ecce	entricity			
Max. co	ncrete compressive s	tress:	0.000	psi	ex	0	in	ey	3	in
Resultir	g tension force:		6162.000	1b	Prof	ile Ecce	ntricity			
Resultir	g compression force		0.000	lb	ex	0	in	ey	3	in
Resultir	g anchor forces / Lo	ad distr	ibution							
Anchor	Tension Load (lb)	Shear	Load (lb)	Com Shear 2		Shear Lo Shea		Anch X	or Co	ordinates (in) Y
1	6162.00	782.1		225.0		749	.0	0.00	0	3.000

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG")

project 2501-0	uss date	9/3/20		
designer CTN	sheet	66	of	82

Pressure Control Manifold

DEWALT

DEWALT DESIGN ASSIST 1.7.6.0

Page 1

PCM Anchorage 2501-0033

8/12/2025

1.Project Information

Company: Peterson Structural Engineers

Project Engineer: CTN

Address:

M: - P: -Phone:

Email: cabe.nieth@psengineers.com

Project Name: 2501-0033

Project Address: Scappoose, Oregon

Notes:

2. Selected Anchor Information

HIT-RE 500 V3 Selected Anchor:

Brand:

Material: 3/8" Ø Threaded Rod ASTM F593 Group 1 -

CW1

Embedment: h_{ef} 4.00 in h_{nom} 4 in

Approval: ICC-ES ESR-3814 Issued/Revision: Jan,2025 **Drill method:** Hammer Drilled

3.Design Principles

ACI 318-19 Design Method:

Load Combinations: Section 5.3 User Defined Loads

17.10.6.3(c) Seismic Loading: Tension 17.10.5.3(d) Shear $\Omega_0 = 2$

4.Base Material Information

Concrete:

Cracked Normal Weight Concrete Type:

Strength 2500 psi

Reinforcement:

Edge Reinforcement None or < #4 Rebar

No (Condition B) Spacing No (Condition B) Shear Tension

Controls Breakout Tension Shear False

Base Plate: 0.375 in Thickness Length 12 Width 2 in in

Sizing Grout Pad Height 2 in Standoff

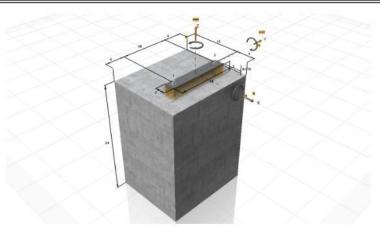
36000 Strength psi

Profile: None

Hole Condition: Dry Hole

Max. Service Temperature: Long Term: 110 Short Term: 130 °F °F

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility



Page 2

PCM Anchorage 2501-0033

8/12/2025

5.Geometric Conditions

h _{slab}	24	in	h_{min}	5.250	in
Edge Cx-	11	in	c_{\min}	1.875	in
Edge Cx+	4	in	cac	7.115	in
Edge Cy-	4	in	s_{min}	1.875	in
Edge Cy+	4	in			

6.Summary Results

Tension Loading

Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength:	204.00	5038.00	0.040	OK	
Concrete Breakout Strength:	408.00	3840.00	0.106	OK	
Bond Strength	408.00	3494.00	0.117	OK	Controls

Shear Loading

Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength	74.00	1786.00	0.041	OK	
Concrete Breakout Strength:	74.00	1364.00	0.054	OK	Controls
Pryout Strength	147.00	10033.00	0.015	OK	

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

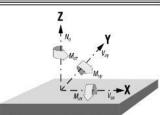
project 250	01-0033 date	3/3/2023	9/3/2025		
designer CTI	N sheet	68	of	82	

Page 3

PCM Anchorage 2501-0033

8/12/2025

7. Warnings and Remarks


ANCHOR DESIGN CRITERIA IS SATISFIED

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG"). The Hilti® products shown in this software are
 displayed solely for comparative advertising purposes. Hilti AG has not reviewed, approved, or endorsed the use of the Hilti®
 products or trademarks in this software and is in no way affiliated with Licensor. The DDA Software uses only publicly available
 Hilti® product data in calculations associated with those Hilti® products.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads	/ Action	S					
Nu	408.0	lb	Vux	0.0	lb	Vuy	147.0	lb
Muz	0.0	in-lb	Mux	0.0	in-lb	Muy	0.0	in-lb
Consi	der Load	Reversal	X	Direction	100%	ΥI	Direction	100%

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

designer CTN sheet 69 of 82	project	2501-0033	date	9/3/202	25		
31166 011	designer	CTN	sheet	69	of	82	

Page 4

PCM Anchorage 2501-0033

8/12/2025

.Load	Distribution									
Max. c	oncrete compressive s	train:	0.000	%	And	hor Ecce	entricity			
Max. c	oncrete compressive s	tress:	0.000	psi	ex	0	in	ey	0	in
Resulti	ng tension force:		408.000	1b	Pro	file Ecce	ntricity			
Resulti	ng compression force		0.000	lb	ex	0	in	ey	0	in
Resulti	ng anchor forces / Lo	ad disti	ribution							
Ancho	Tension Load (lb)	Shear	r Load (lb		Component Shear Load (lb)		Anchor Coordinates (in)			
	81 83		0.40	Shear 2	(Shea	ır Y	X		Y
1	204.00	73.5		0.0		73.5	5	0.00	0	5.000
2	204.00	73.5		0.0		73.5	5	0.00	0	-5.000

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

decigner CTN sheet 70 of 92	_	project	2501-0033	date	9/3/202	.5		
designer CTN Sheet 70 Of 62	_	designer	CTN	sheet	70	of	82	

ASME Tube

DEWALT

DEWALT DESIGN ASSIST 1.7.6.0

Page 1

ASME Tube Anchorage 2501-0033

8/12/2025

1.Project Information

Company: Peterson Structural Engineers

Project Engineer: CTN

Address:

Phone: M: P:

Email: cabe.nieth@psengineers.com

Project Name: 2501-0033
Project Address: Scappoose, Oregon

Notes:

2. Selected Anchor Information

Selected Anchor: HIT-RE 500 V3

Brand: Hilti®

Material: 7/8" Ø Threaded Rod ASTM F593 Group 1 -

CW2

Embedment: h_{ef} 7.00 in h_{nom} 7 in

Approval: ICC-ES ESR-3814

Issued/Revision: Jan,2025
Drill method: Hammer Drilled

Design Principles

Design Method: ACI 318-19

Load Combinations: Section 5.3 User Defined Loads

Seismic Loading: Tension 17.10.5.3(d) Shear 17.10.6.3(c) $\Omega_0 = 2$

4.Base Material Information

Concrete:

Type: Cracked Normal Weight Concrete

Strength 2500 psi

Reinforcement:

Edge Reinforcement None or < #4 Rebar

Spacing Tension No (Condition B) Shear No (Condition B)

Controls Breakout Tension False Shear False

Base Plate:

Sizing Thickness 0.5 in Length 27.1 in Width 295 in

Standoff Grout Pad Height 2 in

Strength 36000 psi
Profile: None

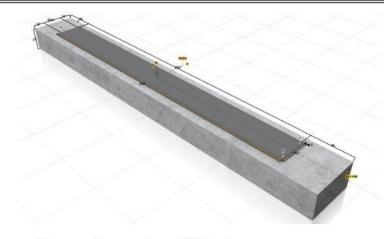
Hole Condition: Dry Hole

Max. Service Temperature: Long Term: 110 °F Short Term: 130 °F

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG")

71



Page 2

ASME Tube Anchorage 2501-0033

8/12/2025

h _{slab}	24	in	h_{min}	9.000	in
Edge Cx-	36	in	c_{\min}	4.375	in
Edge Cx+	36	in	cac	9.923	in
Edge Cy-	12	in	s_{min}	4.375	in
Edge Cy+	12	in			

6.Summary Results

Tension Loading

rension Educing					
Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength:	6547.78	25509.00	0.257	OK	
Concrete Breakout Strength:	14361.00	16816.00	0.854	OK	Controls
Bond Strength	14361.00	25334.00	0.567	OK	
71.71 TO 10.11 TO 10.					

Shear Loading

Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength	2101.00	9042.00	0.232	OK	Controls
Concrete Breakout Strength:	8404.00	37464.00	0.224	OK	
Pryout Strength	8404.00	87317.00	0.096	OK	

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

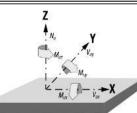
designer CTN	sheet	72	of	82

Page 3

ASME Tube Anchorage 2501-0033

8/12/2025

7. Warnings and Remarks


ANCHOR DESIGN CRITERIA IS SATISFIED

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG"). The Hilti® products shown in this software are
 displayed solely for comparative advertising purposes. Hilti AG has not reviewed, approved, or endorsed the use of the Hilti®
 products or trademarks in this software and is in no way affiliated with Licensor. The DDA Software uses only publicly available
 Hilti® product data in calculations associated with those Hilti® products.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads	/ Action	S					
Nu	0.0	lb	Vux	0.0	lb	Vuy	8404.0	lb
Muz	0.0	in-lb	Mux	311430	in-lb	Muy	0.0	in-lb
Consid	der Load	Reversal	X	.0 Direction	100%	ΥI	Direction	100%

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

designer CTN sheet 73 of	82

Page 4

ASME Tube Anchorage 2501-0033

8/12/2025

Max. c	concrete compressive s	strain:	0.021	%	Anc	hor Ecce	entricity			
Max. c	concrete compressive s	stress:	93.007	psi	ex	0	in	ey	0	in
Result	ing tension force:		14360.810	lb	Prof	file Ecce	ntricity			
Result	ing compression force	:	14360.810	lb	ex	0	in	ey	0	in
	ing anchor forces / Los	ad distri Shear		Comp	onent	Shear Lo	ad (lb)	Anch	or Co	ordinates (in
	\$ 5		1000	Shear X		Shea	r Y	X		Y
1	6547.78	2101.0)	0.0		210	1.0	146.	.000	10.300
1 2	6547.78 632.63	2101.0		0.0		210 210			.000	10.300 -10.300
)				1.0	146.		

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG")

project	2501-0033	date	9/3/202	25		
designer	CTN	sheet	74	of	82	
<u>acoigner</u>	<u> </u>	511000		<u> </u>	<u> </u>	_

Thermax Vaporizer

DEWALT

DEWALT DESIGN ASSIST 1.7.6.0

Page 1

Thermax Vaporizer Anchorage 2501-0033

8/12/2025

1.Project Information

Peterson Structural Engineers Company:

Project Engineer: CTN

Address:

M: P: Phone:

Email: cabe.nieth@psengineers.com

2501-0033 **Project Name:**

Project Address: Scappoose, Oregon

Notes:

2. Selected Anchor Information

HIT-RE 500 V3 Selected Anchor:

Brand: Hilti®

5/8" Ø Threaded Rod ASTM F593 Group 1 -Material:

Embedment: h_{ef} 5.00 in h_{nom} 5

Approval: ICC-ES ESR-3814 Issued/Revision: Jan,2025 Drill method: Hammer Drilled

Design Principles

ACI 318-19 Design Method:

Load Combinations: Section 5.3 User Defined Loads

Tension Shear 17.10.6.3(c) Seismic Loading: 17.10.5.3(d) $\Omega_0 = 2$

Base Material Information

Concrete:

Cracked Normal Weight Concrete Type:

Strength 2500 psi

Reinforcement:

Edge Reinforcement None or < #4 Rebar

Shear Spacing Tension No (Condition B) No (Condition B)

Controls Breakout Tension False Shear False

Base Plate:

Hole Condition:

Thickness 0.5 in Length 21.3 in Width 21.5 in Sizing

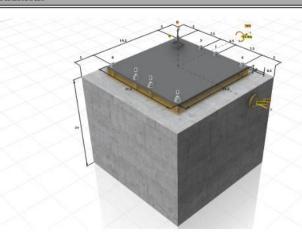
Grout Pad Height 2 in Standoff

Strength 36000 psi Profile: None

Max. Service Temperature: Long Term: 110 °F Short Term: 130 °F

Dry Hole

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility



Page 2

Thermax Vaporizer Anchorage 2501-0033

8/12/2025

5.Geometric Conditions

h _{slab}	24	in	h_{min}	6.500	in
Edge Cx-	5	in	c_{min}	3.125	in
Edge Cx+	5	in	cac	7.581	in
Edge Cy-	5	in	s_{min}	3.125	in
Edge Cy+	5	in			

6.Summary Results

Tension Loading

Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical			
Steel Strength:	877.92	14690.00	0.060	OK				
Concrete Breakout Strength:	3122.00	4523.00	0.690	OK	Controls			
Bond Strength	3122.00	5841.00	0.534	OK				

Shear Loading

Design Proof	Demand(lb)	Capacity(lb)	Utilization	Status	Critical
Steel Strength	103.00	5207.00	0.020	OK	151
Concrete Breakout Strength:	824.00	8805.00	0.094	OK	Controls
Pryout Strength	824.00	37253.00	0.022	OK	

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

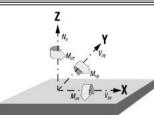
designer CTN sheet 76 of	82	

Page 3

Thermax Vaporizer Anchorage 2501-0033

8/12/2025

7. Warnings and Remarks


ANCHOR DESIGN CRITERIA IS SATISFIED

- The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer, particularly with regard to compliance with applicable standards, norms and permits, prior to using them for your specific project. The DDA Software serves only as an aid to interpret standards, norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG"). The Hilti® products shown in this software are
 displayed solely for comparative advertising purposes. Hilti AG has not reviewed, approved, or endorsed the use of the Hilti®
 products or trademarks in this software and is in no way affiliated with Licensor. The DDA Software uses only publicly available
 Hilti® product data in calculations associated with those Hilti® products.
- Calculations including seismic design requirements in accordance with ACI 318 are required for anchors in structures assigned to seismic design categories C, D, E and F.
- Under these seismic conditions, the direction of shear may not be predictable. In accordance with ACI 318 the full shear force should be assumed also in reverse direction for a safe design. Load reversal may influence the direction of the controlling concrete breakout strength.

8.Load Condition

Desig	n Loads	/ Action	S					
Nu	0.0	lb	Vux	-237.0	lb	Vuy	789.0	lb
Muz	0.0	in-lb	Mux	59220.	in-lb	Muy	17766.	in-lb
Conci	dor Load	Reversal		0			0	
Collsio	uei Loau	Reveisar	X	Direction	100%	YI	Direction	100%

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility

project	2501-0033	date	9/3/202	25		
designer	CTN	sheet	77	of	82	
acoigner	<u> </u>	511000				

Page 4

Thermax Vaporizer Anchorage 2501-0033

8/12/2025

	Distribution	0.025	n/s	40000		******			
	ncrete compressive s		%		hor Eccenti			0	in
	ncrete compressive s		psi	ex	0	in	ey	0	ın
Resultin	g tension force:	3121.589	lb	Prof	file Eccentri	city			
Resultin	g compression force	3121.589	lb	ex	0	in	ey	0	in
Resultin	g anchor forces / Lo	ad distribution							
Anchor	Tension Load (lb)	Shear Load (lb)	Compo Shear X	nent	Shear Load Shear Y		Anch X	or Co	ordinates (in)
1	753.81	103.0	-29.6		98.6		2.25	0	9.750
2	0.00	103.0	-29.6		98.6		2.25	0	-9.750
3	800.35	103.0	-29.6		98.6		-2.2	50	9.750
4	0.00	103.0	-29.6		98.6		-2.2	50	-9.750
5	877.92	103.0	-29.6		98.6		-9.7	50	9.750
6	676.24	103.0	-29.6		98.6		9.75	0	9.750
7	0.00	103.0	-29.6		98.6		9.75	0	-9.750
8	13.28	103.0	-29.6		98.6		-9.7	50	-9.750

Input data and results must be checked for agreement with the existing conditions, the standards and guidelines and must be checked for plausibility Hilti® is a registered trademark of Hilti Aktiengesellschaft ("Hilti AG")

project	2501-0033	date	9/3/202	:5		
designer	CTN	sheet	78	of	82	

<u>Appendix B – Enercalc</u>

Project Title: Engineer: Project ID: Project Descr:

General Foot						Project File: 2025_08_19 Mat Slab Ener	calc Desi	gn 2501-0033.ec6
LIC#: KW-06014167, B	Build:20.25.05	.07		PET	TERSON STRUC	CTURAL ENGINEERS	(c) ENER	CALC, LLC 1982-202
DESCRIPTION:	Equipm	ent Mat Sla	ab De	esign				
Code Reference:	C							
	5	100 0010	000	2010		<u> </u>		
Calculations per A			CRC	2019				
Load Combination		ISCE 7-16						
General Information	tion					26		
Material Propertie	s					Soil Design Values		
f'c : Concrete 28			=		50 ksi	Allowable Soil Bearing	=	1.0 ksf
fy : Rebar Yield Ec : Concrete E			= 0		0.0 ksi 0.0 ksi	Soil Density Increase Bearing By Footing Weight	=	110.0 pcf No
Concrete Densit			= :		5.0 pcf	Soil Passive Resistance (for Sliding)	=	250.0 pcf
ψ Values F	lexure		=	0.	90	Soil/Concrete Friction Coeff.	=	0.30
	hear		-	0.7	50	Increases based on footing Depth		
Analysis Settings				=		Footing base depth below soil surface	=	ft
Min Steel % Ber Min Allow % Ter				=	0.00180	Allow press. increase per foot of depth when footing base is below	=	ksf ft
Min. Overturning		ctor		-	1.0 : 1	when looting base is below	0.700	110
Min. Sliding Saf		1000		=	1.0 : 1	Increases based on footing plan dimension	on	
Add Ftg Wt for S		re			Yes	Allowable pressure increase per foot of de		
Use ftg wt for st	ability, mom	ents & shears	5		Yes	when may length or width is greater than	=	ksf
Add Pedestal W	t for Soil Pr	essure			No	when max. length or width is greater than	=	ft
Use Pedestal w	t for stability	, mom & shea	ar	:	No			11.00
Dimensions								
Width parallel to X-	-X Axis	=		30.0 ft				
Length parallel to 2	Z-Z Axis	=		16.0 ft				
Footing Thickness		=:		24.0 in		Z		
Load location offse	t from footin	na center						
ex : Prll to X-X A		=		18 in				
		=		in				
Dedestal discosio					X	16-0*		×
Pedestal dimension px : parallel to X		=8		in		<u>o</u>		
pz : parallel to Z		=		in				in in
Height		=		in				- н
Bandwidth Distrib	ution Che	ck (ACI 15.4.4	4.2)					Dist.
Direction Requirin				Z-Z Axi	s	30'-0"		Edge
# Bars required w	ithin zone		69	9.6 %		Ž		<u> — й</u>
# Bars required or	each side	of zone	30	0.4 %				
Bottom Reinford	cing							
Bars parallel to X-X	manufact.							
Number of Bars		=		19.0				
Reinforcing Bar		=	#	6				
Bars parallel to Z-Z				00.0		19 - # 6 Dars	36 - # 6	Bars 5.2
Number of Bars Reinforcing Bar		=	#	36.0 6	h	X-X Section Looking to +Z	Z-Z Section Loc	
Rebar Centerline to			#	U				ACCORDING TO
at Bottom of foo		=		3.0 in				
Top Reinforcing	9			40				
Bars parallel to X-X	(Axis							
Number of Bars		=		19				
Reinforcing Bar	Size	=		6				
Bars parallel to Z-Z	Axis							
Number of Bars		=		36				
Deinfersion Box	Cina							

Reinforcing Bar Size = Rebar Centerline to Edge of Concrete...

at Top of footing

3.0 in

Project Title: Engineer: Project ID: Project Descr:

General Footing

Project File: 2025_08_19 Mat Slab Enercalc Design 2501-0033.ec6

LIC#: KW-06014167, Build:20.25.05.07

PETERSON STRUCTURAL ENGINEERS

(c) ENERCALC, LLC 1982-2025

DESCRIPTION: Equipment Mat Slab Design

Applied Loads

		D	Lr	L	S	W	E	н
P : Column Load	=	62.450						k
OB : Overburden	=							ksf
	= "	31.225				55.318	181.845	k-ft
M-xx M-zz	=							k-ft
V-x V-z	= "					0.0	0.0	k
V-z	=					8.846	17.611	k

DESIGN SUMMARY

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.5618	Soil Bearing	0.5618 ksf	1.0 ksf	+D+0.70E about X-X axis
PASS	5.671	Overturning - X-X	170.682 k-ft	967.92 k-ft	+0.60D+0.70E
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	2.944	Sliding - Z-Z	12.328 k	36.297 k	+0.60D+0.70E
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.4190	Z Flexure (+X) Bot Tens	20.083 k-ft/ft	47.931 k-ft/ft	+1.40D
PASS	0.4190	Z Flexure (-X) Bot Tens	20.084 k-ft/ft	47.931 k-ft/ft	+1.40D
PASS	0.1908	X Flexure (+Z) Bot Tens	9.238 k-ft/ft	48.420 k-ft/ft	+1.20D+E
PASS	0.1053	X Flexure (-Z) Bot Tens	5.10 k-ft/ft	48.420 k-ft/ft	+1.40D
PASS	0.0	Z Flexure (+X) Top Tens	0 k-ft/ft	0.0 k-ft/ft	
PASS	0.0	Z Flexure (-X) Top Tens	0 k-ft/ft	0.0 k-ft/ft	
PASS	0.0	X Flexure (+Z) Top Tens	0 k-ft/ft	0.0 k-ft/ft	
PASS	0.006996	X Flexure (-Z) Top Tens	0.3388 k-ft/ft	48.420 k-ft/ft	+0.90D+E
PASS	0.1334	1-way Shear (+X)	10.004 psi	75.0 psi	+1.40D
PASS	0.120	1-way Shear (-X)	9.0 psi	75.0 psi	+1.40D
PASS	0.09160	1-way Shear (+Z)	6.870 psi	75.0 psi	+1.20D+E
PASS	0.05326	1-way Shear (-Z)	3.994 psi	75.0 psi	+1.40D
PASS	0.3284	2-way Punching	49.266 psi	150.0 psi	+1.40D

Detailed Results

	_	-	
Soil	Bea	rin	n

	Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allov
Gross Allowable		(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
1.0	n/a	1.858	0.3960	0.4443	n/a	n/a	0.444
1.0	n/a	4.465	0.3621	0.4781	n/a	n/a	0.478
1.0	n/a	3.813	0.3705	0.4697	n/a	n/a	0.470
1.0	n/a	6.203	0.2037	0.3004	n/a	n/a	0.300
1.0	n/a	10.90	0.2784	0.5618	n/a	n/a	0.562
1.0	n/a	8.640	0.3078	0.5324	n/a	n/a	0.532
1.0	n/a	16.929	0.1201	0.3841	n/a	n/a	0.384
1.0	5.575	n/a	n/a	n/a	0.3815	0.4587	0.459
1.0	5.575	n/a	n/a	n/a	0.3815	0.4587	0.459
1.0	5.575	n/a	n/a	n/a	0.3815	0.4587	0.459
1.0	5.575	n/a	n/a	n/a	0.2289	0.2752	0.275
1.0	5.575	n/a	n/a	n/a	0.3815	0.4587	0.459
1.0	5.575	n/a	n/a	n/a	0.3815	0.4587	0.459
1.0	5.575	n/a	n/a	n/a	0.2289	0.2752	0.275
	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Gross Allowable 1.0 n/a 1.0 n/a 1.0 n/a 1.0 n/a 1.0 n/a 1.0 n/a 1.0 5.575 1.0 5.575 1.0 5.575 1.0 5.575 1.0 5.575 1.0 5.575 1.0 5.575 1.0 5.575	Gross Allowable (in) 1.0 n/a 1.858 1.0 n/a 4.465 1.0 n/a 3.813 1.0 n/a 6.203 1.0 n/a 10.90 1.0 n/a 8.640 1.0 n/a 16.929 1.0 5.575 n/a 1.0 5.575 n/a	Gross Allowable (in) Bottom, -Z 1.0 n/a 1.858 0.3960 1.0 n/a 4.465 0.3621 1.0 n/a 3.813 0.3705 1.0 n/a 6.203 0.2037 1.0 n/a 10.90 0.2784 1.0 n/a 8.640 0.3078 1.0 n/a 16.929 0.1201 1.0 5.575 n/a n/a 1.0 5.575 n/a n/a	Gross Allowable (in) Bottom, -Z Top, +Z 1.0 n/a 1.858 0.3960 0.4443 1.0 n/a 4.465 0.3621 0.4781 1.0 n/a 3.813 0.3705 0.4697 1.0 n/a 6.203 0.2037 0.3004 1.0 n/a 10.90 0.2784 0.5618 1.0 n/a 8.640 0.3078 0.5324 1.0 n/a 16.929 0.1201 0.3841 1.0 5.575 n/a n/a n/a 1.0 5.575 n/a n/a n/a	Gross Allowable (in) Bottom, -Z Top, +Z Left, -X 1.0 n/a 1.858 0.3960 0.4443 n/a 1.0 n/a 4.465 0.3621 0.4781 n/a 1.0 n/a 3.813 0.3705 0.4697 n/a 1.0 n/a 6.203 0.2037 0.3004 n/a 1.0 n/a 10.90 0.2784 0.5618 n/a 1.0 n/a 8.640 0.3078 0.5324 n/a 1.0 n/a 16.929 0.1201 0.3841 n/a 1.0 5.575 n/a n/a n/a 0.3815 1.0 5.575 n/a n/a n/a 0.3815 1.0 5.575 n/a n/a n/a 0.2289 1.0 5.575 n/a n/a n/a 0.3815 1.0 5.575 n/a n/a n/a 0.3815 1.0 5.575 n/a<	Gross Allowable (in) Bottom, -Z Top, +Z Left, -X Right, +X 1.0 n/a 1.858 0.3960 0.4443 n/a n/a n/a 1.0 n/a 4.465 0.3621 0.4781 n/a n/a 1.0 n/a 4.465 0.3621 0.4781 n/a n/a 1.0 n/a 6.203 0.2037 0.3004 n/a n/a 1.0 n/a 6.203 0.2037 0.3004 n/a n/a 1.0 n/a 10.90 0.2784 0.5618 n/a n/a 1.0 n/a 8.640 0.3078 0.5324 n/a n/a 1.0 n/a 16.929 0.1201 0.3841 n/a n/a 1.0 5.575 n/a n/a n/a 0.3815 0.4587 1.0 5.575 n/a n/a n/a 0.3815 0.4587 1.0 5.575 n/a n/a

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
	Overturning Montent	resisting Moment	Stability Ratio	Gidius
X-X, D Only	31.225 k-ft	1,613.20 k-ft	51.664	OK
X-X, +D+0.60W	75.031 k-ft	1,613.20 k-ft	21.50	OK
X-X, +D+0.450W	64.080 k-ft	1,613.20 k-ft	25.175	OK
X-X, +0.60D+0.60W	62.541 k-ft	967.92 k-ft	15.477	OK
X-X, +D+0.70E	183.172 k-ft	1,613.20 k-ft	8.807	OK
X-X, +D+0.5250E	145.185 k-ft	1,613.20 k-ft	11,111	OK

project	2501-0033	date	9/3/2025	.		
designer	CTN	sheet	80	of	82	

Project Title: Engineer: Project ID: Project Descr:

General Footing

Project File: 2025_08_19 Mat Slab Enercalc Design 2501-0033.ec6

LIC#: KW-06014167, Build:20.25.05.07

PETERSON STRUCTURAL ENGINEERS

(c) ENERCALC, LLC 1982-2025

DESCRIPTION: Equipment Mat Slab Design

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X. +0.60D+0.70E	170.682 k-ft	967.92 k-ft	5,671	OK
Z-Z, D Only	None	3.118.43 k-ft	Infinity	OK
Z-Z, +D+0.60W	None	3,118,43 k-ft	Infinity	OK
Z-Z, +D+0.450W	None	3,118.43 k-ft	Infinity	OK
Z-Z, +0.60D+0.60W	None	1,871.06 k-ft	Infinity	OK
Z-Z, +D+0.70E	None	3,118.43 k-ft	Infinity	OK
Z-Z, +D+0.5250E	None	3,118,43 k-ft	Infinity	OK
Z-Z, +0.60D+0.70E	None	1,871.06 k-ft	Infinity	OK
iding Stability				All units k

Sliding Stability

Force Application Axis	Cildina Fara	Decision France	Stabilita Datia	~
Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
X-X, D Only	0.0 k	60.495 k	No Sliding	OH
X-X, +D+0.60W	0.0 k	60.495 k	No Sliding	OH
X-X, +D+0.450W	0.0 k	60.495 k	No Sliding	OH
X-X, +0.60D+0.60W	0.0 k	36.297 k	No Sliding	OH
X-X, +D+0.70E	0.0 k	60.495 k	No Sliding	OF
X-X, +D+0.5250E	0.0 k	60.495 k	No Sliding	OF
X-X, +0.60D+0.70E	0.0 k	36.297 k	No Sliding	OF
Z-Z, D Only	0.0 k	60.495 k	No Sliding	OF
Z-Z, +D+0.60W	5.308 k	60.495 k	11.398	OF
Z-Z, +D+0.450W	3.981 k	60.495 k	15.197	OH
Z-Z, +0.60D+0.60W	5.308 k	36.297 k	6.839	OH
Z-Z, +D+0.70E	12.328 k	60.495 k	4.907	OF
Z-Z, +D+0.5250E	9,246 k	60.495 k	6.543	OF
Z-Z, +0.60D+0.70E	12.328 k	36.297 k	2.944	OI

Footing Tension on Bottom

Flexure Axis & Load Combination	M u k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	6.557	+Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +1.40D	5.10	-Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +1.20D	5.620	+Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +1.20D	4.372	-Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +1.20D+0.50W	6.229	+Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +1.20D+0.50W	3.763	-Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +1.20D+W	6.837	+Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +1.20D+W	3.155	-Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +0.90D+W	5.432	+Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +0.90D+W	2.062	-Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +1.20D+E	9.238	+Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +1.20D+E	0.7541	-Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
X-X, +0.90D+E	7.833	+Z	Bottom	0.5184	ACI 7.6.1.1	0.5280	48.420	OK
Z-Z, +1.40D	20.084	-X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +1.40D	20.083	+X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +1.20D	17.215	-X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +1.20D	17.214	+X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +1.20D+0.50W	17.215	-X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +1.20D+0.50W	17.214	+X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +1.20D+W	17.215	-X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +1.20D+W	17.214	+X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +0.90D+W	12.911	-X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +0.90D+W	12.911	+X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +1.20D+E	17.215	-X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +1.20D+E	17.214	+X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +0.90D+E	12.911	-X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
Z-Z, +0.90D+E	12.911	+X	Bottom	0.5184	ACI 7.6.1.1	0.5225	47.931	OK
ooting Tension on Top	180250200	- 64	115 EXTENSIONS				224.5.25.5	57.505
		01.1.	Tomatan	4 - D 1-1	0		DI. 1488 -	

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
Y-Y +0 90D+E	0.3388	-7	Ton	0.5184	ACI7611	0.5280	48 420	OK

project	2501-0033	date	9/3/202	5		
designer	CTN	sheet	81	of	82	

Project Title: Engineer: Project ID: Project Descr:

General Footing

Project File: 2025_08_19 Mat Slab Enercalc Design 2501-0033.ec6

LIC# : KW-06014167, Build:20.25.05.07 PE

DESCRIPTION: Equipment Mat Slab Design

PETERSON STRUCTURAL ENGINEERS

(c) ENERCALC, LLC 1982-2025

One Way Shear X

One Way Shear X						
Load Combination	Vu @ -X	Vu @ +X	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	9.00 psi	10.00 psi	10.00 psi	75.00 psi	0.13	OK
+1.20D	7.71 psi	8.58 psi	8.58 psi	75.00 psi	0.11	OK
+1.20D+0.50W	7.71 psi	8.58 psi	8.58 psi	75.00 psi	0.11	OK
+1.20D+W	7.71 psi	8.58 psi	8.58 psi	75.00 psi	0.11	OK
+0.90D+W	5.79 psi	6.43 psi	6.43 psi	75.00 psi	0.09	OK
+1.20D+E	7.71 psi	8.58 psi	8.58 psi	75.00 psi	0.11	OK
+0.90D+E	5.79 psi	6.43 psi	6.43 psi	75.00 psi	0.09	OK
One Way Shear Z		20.000000000000000000000000000000000000	\$200.693. 7 4.003			
Load Combination	Vu @ -Z	Vu @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	3.99 psi	5.03 psi	10.00 psi	75.00 psi	0.13	OK
+1.20D	3.42 psi	4.31 psi	8.58 psi	75.00 psi	0.11	OK
+1.20D+0.50W	2.99 psi	4.74 psi	8.58 psi	75.00 psi	0.11	OK
+1.20D+W	2.56 psi	5.17 psi	8.58 psi	75.00 psi	0.11	OK
+0.90D+W	1.71 psi	4.09 psi	6.43 psi	75.00 psi	0.09	OK
+1.20D+E	0.86 psi	6.87 psi	8.58 psi	75.00 psi	0.11	OK
+0.90D+E	0.01 psi	5.79 psi	6.43 psi	75.00 psi	0.09	OK
Two-Way "Punching" Shear					All unit	s k
Load Combination			Vu	Phi*Vn	Vu / Phi*Vn	Statu
+1.40D			49.27 psi	150.00 psi	0.33	OK
+1.20D			42.23 psi	150.00 psi	0.28	OK
+1.20D+0.50W			42.23 psi	150.00 psi	0.28	OK
+1.20D+W			42.23 psi	150.00 psi	0.28	OK
+0.90D+W			31.67 psi	150.00 psi	0.21	OK
+1.20D+E			42.23 psi	150.00 psi	0.28	OK
+0.90D+E			31.67 psi	150.00 psi	0.21	OK

project	2501-0033	date	9/3/2025			
designer	CTN	sheet	82	of	82	